ALGEBRA

I - M.Sc(STATISTICS) / I - Semester Choice Based Credit System(CBCS)

Authors

Prof. Bharathi Dr. A. Sudhakaraiah Department of Mathematics Sri Venkateswara University

Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year : 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers)

326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 **Reg. Off.:** 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP

mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

Page No.

	Unit - I	1 - 102
1.1	Homomorphism	
1.2	Automorphism	
1.3	Cayley's theorem	
1.4	Permutation groups	
1.5	Another Counting principle	
1.6	Sylow's theorem	
1.7	Direct products	
1.8	Finite abelian groups.	
	Unit - II	103 - 174
2.0	Aims and objects	
2.1	Rings	
2.2	Some special classes of Rings	
2.3	Homomorphism	
2.4	Ideals and quoties of an integral domain	
2.5	Euclidean rings(Domain)	
2.6	Polynomial Rings	
2.7	Polynomial Over the rational fields	
2.8	Polynomial rings over commutative Rings	
2.9	Exercise	
	Unit - III	175 - 212
3.0	Aims and objects	
3.1	Extension fields	

3.3 Construction with straightedge and compass

3.2 Roots of polynomials

- 3.4 More about roots
- 3.5 The elements of Galois theory
- 3.6 Solvability of radicles
- 3.7 Galois group over the Rationals
- 3.8 Exercise

Unit - IV 213 - 260

- 4.0 Aims and objects
- 4.1 Partially ordered sets
- 4.2 Lattices
- 4.3 Modular lattices
- 4.4 Schreier's theorem
- 4.5 The chain conditions decomposition theory for lattices with ascending chain condition
- 4.6 Independence
- 4.7 Complemented modular lattices
- 4.8 Boolean algebras
- 4.9 Exercise

Syllabus for I - MSc(STATISTICS)

Paper I: Algebra

I.GROUP THEORY

Homomorphisms, Automorphisms, Cayleys theorem, Permutation groups, Another counting principle. Sylow's theorem, Direct products, Finite abelian groups. (3 Questions to be set).

II. RING THEORY

Rings, Some special classes of rings, Homomorphisms, Ideals and quotients of an integral domain, Euclidean rings. The field of quotients of an integral domain, Euclidean rings, a particular Euclidean ring, polynomial rings, polynomial over the rational field, polynomial rings over the commutative rings. (2 Questions to be set).

III.FIELDS

Extension fields, Roots of polynomials, Construction with straight edge and compass, More about roots, the elements of Galois theory, Solvability by radicals, Galois groups over the rationals. (3 Questions to be set).

IV. LATTICES

Partially ordered sets, Lattices, Modular Lattices, Schreier's theorem. The Chain conditions decomposition theory for Lattices with ascending chain condition, Independence, complemented modular lattices, Boolean algebras. (2 Questions to be set).

Text Books:

1 .Topics in Algebra by I.N. Horstein (2nd Edition), Vikas Publishing House Pvt.Ltd.

2. Lectures in Abstract Algebra by Nathan Jacobson, D. Van Nostrand Company, Inc.

Probability and Distributions

I - M.Sc(STATISTICS) / I - Semester Choice Based Credit System(CBCS)

- By Dr. M. Bhupathi Naidu Professor and Registrar Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

Page No.

Unit-I

1.0	Aims and Objectives	1.2			
1.1	Introduction 1.2				
1.2	Descriptive Statistics	1.2			
	1.2.1 Concept of Primary and Secondary Data	1.2			
1.3	Methods of Collection and Editing of Primary Data	1.4			
1.4	Designing a Questionnaire and a Schedule	1.6			
1.5	Sources and Editing of Secondary Data	1.8			
1.6	Classification and Tabulation of Data	1.8			
1.7	Measures of Central Tendency with Simple Applications	1.11			
	1.7.1 Mean, Median, Mode, Geometric Mean and				
	Harmonic Mean	1.12			
1.8	Absolute and Relative Measures of Dispersion with				
	Simple Applications	1.32			
	1.8.1 Range, Quartile Deviation, Mean Deviation and Standar	d			
	Deviation	1.33			
1.9	Importance of Moments	1.41			
	1.9.1 Central and Non-central Moments, and their Interrelation	nships			
		1.41			
1.10	Sheppard's Corrections for Moments for Grouped Data	1.43			
1.11	Measures of Skewness Based on Quartiles and Moments and K	Surtosis			
	Based on Moments with Real Life Examples	1.44			
1.12	Probability	149			

	1.12.1 Basic Concepts in Probability Deterministic and Random		
	Experiments, Trail, Outcome, Sample Space, Event, and		
		Operations of Events, Mutually Exclusive and Exhaustive	e Events,
		and Equally Likely and Favourable Outcomes with Exam	ples
			1.49
1.13	Mather	natical, Statistical and Axiomatic Definitions of Probabilit	y with Mer
	its and	Demerits	1.64
1.14	Propert	ies of Probability Based on Axiomatic Definition	1.67
1.15	Conditi	ional Probability and Independence of Events	1.68
1.16	Additio	on and Multiplication Theorems for 'n' Events	1.69
1.17	Boole's	s Inequality and Bayes' Theorem	1.77
1.18	Probler	ns on Probability using Counting Methods and Theorems	1.80
1.19	Answe	rs to Check Your Progress	1.82
1.20	Let us	Sum Up	1.83
1.21	Keywo	rds	1.83
1.22	Questio	ons for Discussion	1.84

Unit-II

2.0	Aims	Aims and Objectives				
2.1	Introdu	Introduction				
2.2	Rando	Random Variables				
	2.2.1	Definition of Random Variable	2.88			
	2.2.2	Discrete and Continuous Random Variables	2.92			
	2.2.3	Functions of Random Variables, Probability Mass Func	tion and			
		Probability Density Function with Illustrations	2.93			
2.3	Distrib	oution Function and its Properties	2.104			

	2.3.1	Transformation of One-Dimensional Random Variable (Simple 1-1
		Functions Only)	2.107
	2.3.2	Notion of Bivariate Random Variable, Bivariate Distribu	ition and
		Statement of its Properties	2.110
2.4	Joint, I	Marginal and Conditional Distributions	2.112
2.5	Indepe	endence of Random Variables	2.124
2.6	Mathe	matical Expectation	2.126
	2.6.1	Mathematical Expectation of a Function of a Random V	Variable
			2.127
	2.6.2	Raw and Central Moments and Co-variance using Math	nematical
		Expectation with Examples	2.131
2.7	Additi	on and Multiplication Theorems of Expectation	2.137
	2.7.1	Definition of Moment Generating Function (M.G.F),	
		Cumulant Generating Function (C.G.F), Probability Gene	erating
		Function (P.G.F) and Characteristic Function (C.F) and	Statements
		of their Properties with Applications	2.139
2.8	Cheby	shev's, and Cauchy-Schwartz's Inequalities and their App	blications
			2.150
2.9	Staten	nent and Applications of Weak Law of Large Numbers and	nd Central
	Limit'	Theorem for Identically and Independently Distributed (i.i	i.d) Random
	Variab	les with Finite Variance	2.156
2.10	Answe	ers to Check Your Progress	2.160
2.11	Let us	Sum Up	2.161
2.12	Keyw	ords	2.162
2.13	Questi	ions for Discussion	2.163

Unit-III						
3.0	Aims and Objectives	3.165				
3.1	Introduction	3.165				
3.2	Discrete Distributions, Distributions Properties of these Distrib	outions such				
	as m.g.f,c.g.f., p.g.f., c.f., and Moments up to Fourth Order an	nd their Real				
	Life Applications, Reproductive Property Wherever Exists	3.166				
	3.2.1 Uniform Distribution	3.166				
	3.2.2 Bernoulli Distribution	3.167				
	3.2.3 Binomial Distribution	3.167				
	3.2.4 Poisson Distribution	3.178				
	3.2.5 Negative Binomial Distribution	3.190				
	3.2.6 Geometric and Hyper-geometric (Mean and Variance C	Only)				
		3.194				
3.3	Binomial Approximation to Hyper-Geometric, Poisson Approxi-	imation to				
	Binomial and Negative Binomial Distributions	3.200				
3.4	Answers to Check Your Progress	3.202				
3.5	Let us Sum Up	3.204				
3.6	Keywords	3.204				
3.7	Questions for Discussion	3.204				
	Unit-IV					
4.0	Aims and Objectives	4.207				
4.1	Introduction	4.207				
4.2	Continuous Distributions	4.208				
	4.2.1 Rectangular and Normal Distributions	4.209				
4.3	Normal Distribution as a Limiting Case of Binomial and Poisso	on				
	Distributions	4.218				

	4.3.1	4.3.1 Exponential, Gamma, Beta of Two Kinds (Mean and Variance Only)		
		and Cauchy (Definition and c.f. only) Distributions, Properties of these		
		Distributions such as m.g.f., c.g.f., c.f., and Moments up to Fourth		
		Order, their Real Life Applications	4.219	
4.4	Repro	ductive Productive Property Wherever Exists	4.234	
4.5	Answ	ers to Check Your Progress	4.234	
4.6	Let us	Sum Up	4.236	
4.7	Keyw	ords	4.236	
4.8	Quest	ions for Discussion	4.237	

First Year - M.Sc (Statistics) PAPER - II: Probability and Distributions

Unit –I

Descriptive Statistics: Concept of primary and secondary data. Methods of collection and editing of primary data. Designing a questionnaire and a schedule. Sources and editing of secondary data. Classification and tabulation of data. Measures of central tendency (mean, median, mode, geometric mean and harmonic mean) with simple applications. Absolute and relative measures of dispersion (range, quartile deviation, mean deviation and standard deviation) with simple applications. Importance of moments, central and non-central moments, and their interrelationships, Sheppard's corrections for moments for grouped data. Measures of skewness based on quartiles and moments and kurtosis based on moments with real life examples.

Probability: Basic concepts in probability deterministic and random experiments, trail, outcome, sample space, event, and operations of events, mutually exclusive and exhaustive events, and equally likely and favourable outcomes with examples. Mathematical, statistical and axiomatic definitions of probability with merits and demerits. Properties of probability based on axiomatic definition. Conditional probability and independence of events. Addition and multiplication theorems for n events. Boole's inequality and Bayes' theorem. Problems on probability using counting methods and theorems.

Unit –II

Random Variables: Definition of random variable, discrete and continuous random variables, functions of random variables, probability mass function and probability density function with illustrations. Distribution function and its properties. Transformation of one-dimensional random variable (simple 1-1 functions only). Notion of bivariate random variable, bivariate distribution and statement of its properties. Joint, marginal and conditional distributions. Independence of random variables.

Mathematical Expectation: Mathematical expectation of a function of a random variable. Raw and central moments and covariance using mathematical expectation with examples.

Addition and multiplication theorems of expectation. Definition of moment generating function (m.g.f), cumulant generating function (c.g.f), probability generating function (p.g.f) and characteristic function (c.f) and statements of their properties with applications. Chebyshev's , and Cauchy-Schwartz's inequalities and their applications. Statement and applications of weak law of large numbers and central limit theorem for identically and independently distributed (i.i.d) random variables with finite variance.

Unit –III

Discrete Distributions: Uniform, Bernoulli, Binomial, Poisson, Negative binomial, Geometric and Hyper-geometric (mean and variance only) distributions. Properties of

these distributions such as m.g.f, c.g.f., p.g.f., c.f., and moments up to fourth order and their real life applications. Reproductive property wherever exists. Binomial approximation to Hyper-geometric, Poisson approximation to Binomial and Negative binomial distributions.

Unit –IV

Continuous Distributions: Rectangular and Normal distributions. Normal distribution as a limiting case of Binomial and Poisson distributions. Exponential, Gamma, Beta of two kinds (mean and variance only) and Cauchy (definition and c.f. only) distributions. Properties of these distributions such as m.g.f., c.g.f., c.f., and moments up to fourth order, their real life applications and reproductive productive property wherever exists.

Design and Analysis of Experiments

I - M.Sc(STATISTICS) / I - Semester Choice Based Credit System(CBCS)

- By Dr. M. Bhupathi Naidu Professor and Registrar Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 **Year :** 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 **Reg. Off.:** 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

Page No.

Unit-I	
--------	--

1.0	Aims	1.2			
1.1	Introdu	Introduction			
1.2	Conce	Concepts of Population			
	1.2.1	.2.1 Sample, Sampling Unit, Parameter, Statistic, Sampling Er			
			1.4		
	1.2.2	Sampling Distribution, Sample Frame and Standard Erro			
			1.9		
1.3	Princi	pal Steps in Sample Surveys	1.13		
	1.3.1	Need for Sampling	1.14		
	1.3.2	Census Versus Sample Surveys	1.15		
	1.3.3	Sampling and Non- sampling Errors, Sources and Treat	ment of		
		Non-Sampling Errors	1.17		
	1.3.4	Advantages and Limitations of Sampling	1.17		
1.4	Types	of Sampling	1.18		
	1.4.1	Subjective, Probability and Mixed Sampling Methods	1.18		
1.5	Methods of Drawing Random Samples with and without Replacement				
			1.26		
	1.5.1	Estimates of Population Mean, Total and Proportion, the	eir		
		Variances and Estimates of Variances in the following M	Aethods		
		(i) SRSWR and SRSWOR			
		(ii) Stratified Random Sampling with Proportional and	Neyman		
		Allocation			
		(iii) Systematic Sampling when N=nk	1.26		
	1.5.2	Comparison of Relative Efficiencies, Advantages and			
		Disadvantages of above Methods of Sampling	1.45		
1.6	Let us	Sum Up	1.46		
1.7	Answe	ers to Check Your Progress	1.47		
1.8	Keyw	ords	1.48		
1.9	Questi	ions for Discussion	1.48		

Unit-II						
2.0	Aims a	and Objectives	2.51			
2.1	Introdu	Introduction				
2.2	ANOV	ΊΑ	2.52			
	2.2.1	One-Way, Two-Way Classifications with One Observati	on per Cell			
			2.52			
2.3	Conce	pt of Gauss-Markoff Linear Model	2.67			
2.4	Statem	ent of Cochran's Theorem	2.68			
2.5	Conce	pt of fixed Effect Model and Random Effect Model	2.71			
2.6	Expect	tation of Various Sums of Squares	2.73			
2.7	Mathe	matical Analysis	2.77			
	2.7.1	Importance and Applications of Design of Experiments	2.77			
	2.7.2	Principles of Experimentation	2.78			
2.8	Analys	sis of Completely Randomized Design (C.R.D)	2.80			
	2.8.1	Randomized Block Design (R.B.D) and Latin Square D including One Missing Observation	esign (L.S.D) 2.80			
	2.8.2	Expectation of Various Sum of Squares, Comparison of	the			
		Efficiencies of above Designs	2.86			
2.9	Let us	Sum Up	2.90			
2.10	Answe	ers to Check Your Progress	2.90			
2.11	Keywo	ords	2.92			
2.12	Questi	ons for Discussion	2.92			
		Unit-III				
3.0	Aims a	and Objectives	3.94			
3.1	Introdu	iction	3.94			
3.2	Time S	Series	3.94			
	3.2.1	Time Series and its Components with Illustrations	3.94			
	3.2.2	Additive, Multiplicative and Mixed Models	3.95			
	3.2.3	Determination of Trend by Least Squares,				
		Moving Average Methods	3.97			
	3.2.4	Growth Curves and Their Fitting, Modified Exponential,	-			
		and Logistic Curves	3.103			
3.3	Detern	nination of Seasonal Indices By Ratio To Moving Average	e 3.106			

	3.3.1	Ratio to Trend and Link Relative Methods	3.106
3.4	Index Numbers		3.111
	3.4.1	Concept of Index Numbers	3.112
	3.4.2	Construction of Index Numbers	3.112
	3.4.3	Features of Index Numbers	3.113
	3.4.4	Uses of Index Numbers	3.114
	3.4.5	Important Kinds of Index Numbers	3.115
	3.4.6	Methods of Constructing Index Numbers	3.116
3.5	Laspey	yer's, Paasche's and Fisher's Index Numbers	3.124
	3.5.1	Criterion of a Good Index Numbers	3.125
	3.5.2	Problems Involved in the Construction of Index Number	ers
			3.128
	3.5.3	Fisher's Index as Ideal Index Number	3.133
	3.5.4	Fixed and Chain base Index Numbers	3.134
	3.5.5	Cost of Living Index Numbers and Wholesale Price Ind	
			3.140
3.6	Base S	hifting, Splicing and Deflation of Index Numbers	3.143
3.7	Officia	al Statistics	3.146
	3.7.1	Functions and Organization of CSO and NSSO	3.146
	3.7.2	Agricultural Statistics, Area and Yield Statistics	3.148
	3.7.3	National Income and its Computation, Utility and Diffic Estimation of National Income	ulties in 3.150
3.8	Let us	Sum Up	3.153
3.9	Answe	ers to Check Your Progress	3.154
3.10	Keywo	ords	3.155
3.11	Questi	ons for Discussion	3.156
		Unit-IV	
4.0	Aims a	and Objectives	4.159
4.1	Introdu	action	4.160
4.2	Vital S	tatistics	4.160
	4.2.1	Definition and uses of Vital Statistics	4.160
	4.2.2	Sources of Vital Statistics	4.161
4.3	Regist	ration Method and Census Method	4.163

	4.3.1	Rates and Ratios, Crude Death Rates, Age Specific De	ath Rate
			4.163
	4.3.2	Standardized Death Rates, Crude Birth Rate	4.165
	4.3.3	Age Specific Fertility Rate, General Fertility Rate,	
		Total Fertility Rate	4.166
4.4	Measu	rement of Population Growth	4.168
	4.4.1	Crude Rate if Natural Increase- Pearl's Vital Index	4.168
	4.4.2	Gross Reproductive Rate sand Net Reproductive Rate	4.169
	4.4.3	Life Tables, Construction and Uses of Life Tables and	
		Abridged life Tables	4.174
4.5	Demar	nd Analysis	4.179
	4.5.1	Introduction, Demand and Supply	4.179
	4.5.2	Price Elastics of Supply and Demand	4.179
4.6	Metho	ds of Determining Demand and Supply Curves	4.185
	4.6.1	Leontief's, Pigous's Methods of Determining Demand G	Curve
		from Time Series Data, Limitations of these Methods	
		Pigou's Method from Time Series Data	4.185
	4.6.2	Pareto Law of Income Distribution Curves of Concentra	ation
			4.195
4.7	Let us	Sum Up	4.196
4.8	Answe	ers to Check Your Progress	4.197
4.9	Keywo	ords	4.198
4.10	Questi	ons for Discussion	4.199

First Year - M.Sc (Statistics)

PAPER - III: Design and Analysis of Experiments

Unit – I: Design of Sample Surveys

Concepts of population, sample, sampling unit, parameter, statistic, sampling errors, sampling distribution, sample frame and standard error. Principal steps in sample surveys - need for sampling, census versus sample surveys, sampling and non- sampling errors, sources and treatment of non-sampling errors, advantages and limitations of sampling.

Types of Sampling: Subjective, probability and mixed sampling methods. Methods of drawing random samples with and without replacement. Estimates of population mean, total, and proportion, their variances and the estimates of variances in the following methods.

- (i) SRSWR and SRSWOR
- (ii) Stratified random sampling with proportional and Neyman allocation, and
- (iii) Systematic sampling when N = nk.

Comparison of relative efficiencies. Advantages and disadvantages of above methods of sampling.

Unit - II: Analysis of Variance and Design of Experiments

ANOVA – one-way, two-way classifications with one observation per cell –concept of Gauss-Markoff linear model, statement of Cochran's theorem, concept of fixed effect model and random effect model. Expectation of various sums of squares, Mathematical analysis, importance and applications of design of experiments. Principles of experimentation, Analysis of Completely randomized Design (C.R.D), Randomized Block Design (R.B.D) and Latin Square Design (L.S.D) including one missing observation, expectation of various sum of squares. Comparison of the efficiencies of above designs.

Unit - III: Time Series, Index Numbers and Official Statistics

Time Series: Time series and its components with illustrations, additive, multiplicative and mixed models. Determination of trend by least squares, moving average methods. Growth curves and their fitting- Modified exponential, Gompertz and Logistic curves. Determination of seasonal indices by Ratio to moving average, ratio to trend and link relative methods.

Index Numbers: -Concept, construction, uses and limitations of simple and weighted index numbers. Laspeyer's, Paasche's and Fisher's index numbers, criterion of a good index numbers, problems involved in the construction of index numbers. Fisher's index as ideal index number. Fixed and chain base index numbers. Cost of living index numbers and wholesale price index numbers. Base shifting, splicing and deflation of index numbers.

Official Statistics: - Functions and organization of CSO and NSSO. Agricultural Statistics, area and yield statistics. National Income and its computation, utility and difficulties in estimation of national income.

Unit –IV: Vital statistics:

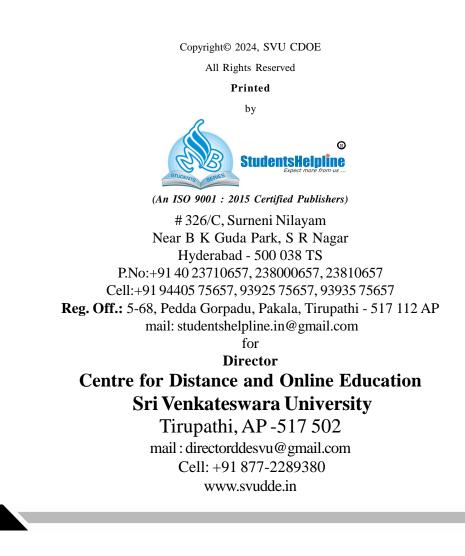
Introduction, definition and uses of vital statistics. Sources of vital statistics, registration method and census method. Rates and ratios, Crude death rates, age specific death rate, standardized death rates, crude birth rate, age specific fertility rate, general fertility rate, total fertility rate. Measurement of population growth, crude rate if natural increase-Pearl's vital index. Gross reproductive rate sand Net reproductive rate, Life tables, construction and uses of life tables and Abridged life tables.

Demand Analysis: Introduction. Demand and supply, price elastics of supply and demand. Methods of determining demand and supply curves, Leontief's ,Pigous's methods of determining demand curve from time series data, limitations of these methods Pigou's method from time series data. Pareto law of income distribution curves of concentration.

Python

I - M.Sc(STATISTICS) / I - Semester Choice Based Credit System(CBCS)

Authors Dr. G.V. Ramesh Babu Dr. Vijay Lakshmi Dr. M. Sridevi Dept. of Computer Science S.V. University, Tirupati - 517502 AP


Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP-517 502

Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

Python

Course outcomes

After successful completion of this course, the students will be able to:

- **CO 1: Summarize the fundamental concepts of python programming.** [K2]
- CO 2: Interpret object oriented and event driven programming in python. [K2]
- CO 3: Apply the suitable data structures to solve the real time problems. [K3]

CO 4: Apply regular expressions for many different situations. [K3]

Unit-I

Introduction to python: Numbers, strings, variables, operators, expressions, Indentation, String operations and functions, math function calls, Input/output statements, conditional if, while and for loops,

Unit-II

Functions: user defined functions, parameters to functions, recursive functions, and lambda function.

Event driven programming: Turtle graphics, Turtle bar chart, Widgets, key press events, mouse events, timer events.

Unit-III

Data structures: List- list methods & functions, Tuple-tuple methods & functions, Dictionariesdictionary methods & functions, traversing dictionaries. Sets-methods & functions, Files

Unit-IV

OOP: class, object, methods, constructors, inheritance, inheritance types, polymorphism, operator overloading, abstract classes, exception handling.

Unit-V

Regular expressions: Power of pattern matching and searching using regex in python, Meta characters and Sequences used in Patterns, Password, email, URL validation using regular expression, Pattern finding programs using regular expression.

Python

	Chapter-1: Introduction		
1.0	Objectives	1	
1.1	Introduction to Python 1		
1.2	History of Python Programming Language2		
1.3	Features of Python	3	
1.4	Python Advantages and Disadvantages	4	
1.5	Real-world Applications of Python	5	
1.6	Installing Python	8	
1.7	Environment Variables	9	
1.8	Setting up Path	9	
1.9	Python Interactive Shell	10	
	1.9.1 Interactive Mode	10	
	1.9.2 Script Mode	12	
1.10	Editing Python Files	12	
1.11	Python Virtual Machine	16	
	1.11.1 Viewing the Byte Code	16	
1.12	Python Basics	17	
	1.12.1 Comments	17	
	1.12.2 Keywords in Python	18	
	1.12.3 Variables	19	
1.13	Standard Data Types in Python	21	
	1.13.1 Numbers	22	
	1.13.2 None	24	
	1.13.3 Strings	24	
	1.13.4 Identify Data type of a Variable	25	
	1.13.5 Check Datatype of a Variable	25	
	1.13.6 Tuple	26	
	1.13.7 List	26	
	1.13.8 Sets	26	
	1.13.9 Dictionary	27	
	1.13.10 Type Conversion	27	
	1.13.11 Mutable and Immutable Data Types in Python	29	

1.14	Operators	29	
	1.14.1 Arithmetic operators	29	
	1.14.2 Assignment Operators	32	
	1.14.3 Comparison Operators (Relational Operators)	32	
	1.14.4 Logical Operators	35	
	1.14.5 Bitwise Operators	35	
	1.14.6 Identity Operators	36	
	1.14.7 Membership Operators	37	
1.15	Expressions	37	
1.16	Operator Precedence and Associativity	39	
1.17	Indentation	40	
1.18	String Operations and Functions	40	
	1.18.1 Working with Strings	40	
	1.18.2 String Functions	42	
1.19	Math Functions	45	
1.20	Input/Ouput Statements	47	
1.21	Control Structures	47	
	1.21.1 Sequential Control Structures	48	
	1.21.2 Selection/Conditional Statements	48	
	1.21.3 Iterative Control Structures	51	
1.22	Outcomes	53	
1.23	Review Questions	53	
1.24	Multiple Choice Questions	54	
	Unit-2: Functions & Event Driven Programming		
2.0	Objectives	57	
2.1	Introduction to Functions	57	
2.2	Function Basics	58	
	2.2.1 General Form of a Function Definition	59	
2.3	Calling Functions	60	
2.4	Return Statement	61	
2.5	Recursive Functions	62	
2.6	Function Arguments		
2.7	Anonymous Functions or Lambda Functions	67	
2.8	Introduction to Event Driven Programming	69	
	2.8.1 Turtle Graphics	69	

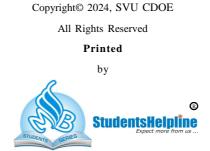
	2.8.2	Turtle Barchart	72
2.9	Event driven programming		73
	2.9.1	Event	74
	2.9.2	Widgets	74
2.10	Event l	Handlers	76
	2.10.1	Keypress Events	76
	2.10.2	Mouse Events	78
	2.10.3	Timer Events	79
2.11	Examp	le Programs	81
2.12	Outcor	nes	84
2.13	Review	Questions	84
2.14	Multip	le Choice Questions	85
		Chapter-3: Data Structures	
3.0	Objecti	ives	87
3.1	Introdu	ction	87
3.2	List		88
	3.2.1	Creation of List	88
	3.2.2	Accessing Elements of a List	88
	3.2.3	Updating Values in the Lists	89
	3.2.4	Del Statement	89
	3.2.5	Nested Lists	90
	3.2.6	Operations on List	90
		3.2.6.1 Slice Operation on a List	90
		3.2.6.2 Concatenation	91
		3.2.6.3 Repetition of a List	92
		3.2.6.4 Membership of List	93
	3.2.7	Methods in List	94
3.3	Tuples		99
	3.3.1	Creating a Tuple	100
	3.3.2	Accessing values in a Tuple	100
	3.3.3	Updating Values in Tuples	101
	3.3.4	Deleting Elements in Tuple	101
	3.3.5	Converting a List into Tuple	102
	3.3.6	Basic tuple operations	102
		3.3.6.1 Slicing	102

		3.3.6.2 Concatenation	103
		3.3.6.3 Repetition of a Tuple	103
		3.3.6.4 Membership of Tuple	104
		3.3.6.5 Iteration of Tuple	104
		3.3.6.6 Comparison(>,<.==)	105
	3.3.7	TupleAssignment	105
	3.3.8	Nested Tuples	106
	3.3.9	Tuple Methods	106
	3.3.10	Tuple Built - in - Functions	107
3.4	Dictior	naries	109
	3.4.1	Creating Dictionary	110
	3.4.2	Accessing Values in Dictionary	110
	3.4.3	Adding and Modifying an Item in Dictionary	110
	3.4.4	Deleting Items in Dictionary	111
	3.4.5	Nested Dictionaries	111
	3.4.6	Built in Dictionary Functions and Methods	111
3.5	Strings		113
3.6	Sets		116
	3.6.1	Creating and Accessing the Elements of a Set	117
	3.6.2	Set Operations	118
	3.6.3	Set Methods	121
3.7	Files		122
	3.7.1	Different Access Modes in Files	122
	3.7.2	Iterating through Files	123
	3.7.3	Reading and Writing Files	124
	3.7.4	Deleting Files	126
	3.7.5	Python Libraries	126
3.8	Out Co	omes	127
3.9	Review	w Questions	127
3.10	Multip	ble Choice Questions	127
		Chapter-4: OOP	
4.0	Object		131
4.1	Introdu	action	131
4.2	Feature	es of Object Oriented Programming	131
4.3	Class		132

4.4	Creating Objects 1			
4.5	Method	ls	135	
4.6	Constru	actors	138	
4.7	Inherita	ance	140	
	4.7.1	Super() method	142	
	4.7.2	Types of Inheritance	143	
4.8	Polymo	orphism	147	
	4.8.1	Overloading	148	
	4.8.2	Operator Overloading	150	
4.9	Abstrac	ction	151	
4.10	Errors	and Exceptions	152	
	4.10.1	Handling Exceptions	153	
	4.10.2	Raising Exceptions	157	
	4.10.3	Instantiating Exceptions	158	
4.11	Outcor	nes	159	
4.12	Review	v Questions	159	
4.13	Multip	le Choice Questions	159	
		Chapter-5: Regular Expressions		
5.0	Objecti	ves	163	
5.1	Introdu	ction	163	
5.2	Regular Expressions16			
5.3	Power	of Pattern Matching in Regex	164	
5.4	Metach	aracters in Regular Expression	165	
	5.4.1	Sequences	166	
	5.4.2	Characters Class	171	
	5.4.3	Groups	171	
5.5	Pattern Matching 1			
5.6	Power of Pattern Searching using Regexp 1'			
5.7	Real Time Parsing of N/W or System Data using Regex Password Validation 17			
5.8	E-Mail validation using Regular Expression 17			
5.9	Example Programs 17			
5.10	Outcor	nes	182	
5.11	Review Questions 18			
5.12	Multiple Choice Questions 18			

STATISTICAL INFERENCE

I - M.Sc(STATISTICS) / II - Semester Choice Based Credit System(CBCS)


- By Dr. M. Bhupathi Naidu Professor and Registrar Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

> Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

Page No.

			Page No.
		Unit-I	
1.0	Aims a	and Objectives	1.1
1.1	Introdu	action	1.2
1.2	Popula	tion Correlation Coefficient and its Properties	1.2
	1.2.1	Bivariate Data, Scattered Diagram	1.5
1.3	Sample	e Correlation Coefficient	1.7
	1.3.1	Computation of Correlation Coefficient for Grouped D	
			1.9
	1.3.2	Correlation Ratio, Spearman's Rank Correlation Coeff its Properties	icient and 1.11
	1.3.3	Principle of Least Squares	1.16
1.4	Simple	Linear Regression	1.22
	1.4.1	Correlation Verses Regression	1.26
	1.4.2	Properties of Regression Coefficients	1.28
	1.4.3	Fitting of Quadratic and Power Curves	1.30
1.5	Conce Variab	pts of Partial and Multiple Correlation Coefficients (Only les)	y for Three 1.33
	1.5.1	Analysis of Categorical Data	1.35
	1.5.2	Independence and Association and Partial Association of	f Attributes 1.36
1.6	Variou	s Measures of Association (Yule's) for Two way Data	1.37
	1.6.1	Coefficient of Contingency (Pearson and Tcherprow)	1.40
	1.6.2	Coefficient of Colligation	1.41
1.7	Answe	ers to Check Your Progress	1.42
1.8	Let us	Sum Up	1.45
1.9	Keywo	ords	1.45
1.10	Questi	ons for Discussion	1.46
		Unit-II	
2.0	Aims	and Objectives	2.50
2.1	Introc	luction	2.50
2.2	Conc	epts of Population, Parameter	2.50
	2.2.1	Random Sample, Statistic	2.52
2.3	Samp	ling Distribution and Standard Error	2.53
	2.3.1	Standard Error of Sample Mean(s) and Sample Propo	rtion(s) 2.56
2.4	Exact	t Sampling Distributions	2.58

	2.4.1	Statement and Properties of X^2 , t and F Distributions	
		Interrelationship	2.58
	2.4.2	Independence of Sample Mean and Variance in Random S Normal Distributions	ampling from 2.61
2.5	Point E	Estimation of a Parameter	2.62
	2.5.1	Concept of Bias and Mean Square Error of an Estimate	2.64
2.6	Criteri	a of Good Estimator	2.65
	2.6.1 Consistency, Unbiasedness, Efficiency and Sufficiency with		vith
		Examples	2.65
2.7	Statem	ent of Neyman's Factorization Theorem	2.77
2.8	Deriva	tions of Sufficient Statistics in Case of Binomial, Poisson,	
	Norma	l and Exponential (One Parameter Only) Distributions	2.79
2.9	Estima	tion by Method of Moments	2.83
	2.9.1	Maximum Likelihood (ML)	2.85
	2.9.2	Statements of Asymptotic Properties of MLE	2.88
2.10	Concep	pt of Interval Estimation	2.90
	2.10.1	Confidence Intervals of the Parameters of Normal Popul by Pivot Method	lation 2.90
2.11	Answe	ers to Check Your Progress	2.95
2.12	Let us	Sum Up	2.97
2.13	Keywo	ords	2.98
2.14	Questi	ons for Discussion	2.100
		Unit-III	
3.0	Aims a	and Objectives	3.101
3.1	Introdu	uction	3.102
3.2	Concep	pts of Statistical Hypotheses	3.102
3.3	Null ar	nd Alternative Hypotheses	3.103
	3.3.1	Critical Region	3.114
3.4	Two T	ypes of Errors	3.116
3.5	Level	of Significance	3.120
	3.5.1	Power of a Test. One and Two Tailed Tests	3.125
	3.5.2	Test function (Non-Randomized and randomized)	3.128
3.6	Neyma	an-Pearson's Fundamental Lemma for Randomized Tests	3.128
3.7	Examp	oles in Case of Binomial, Poisson and their Powers	3.131
3.8	Expon	ential and Normal Distributions and their Powers	3.140
3.9	Use of	Central Limit Theorem in Testing	3.147

3.10	Large Sample Tests	3.149
	3.10.1 Confidence Intervals for Mean(s), Proportion(s)	3.150
	3.10.2 Standard Deviation(s) and Correlation Coefficient(s)	3.153
3.11	Answers to Check Your Progress	3.155
3.12	Let us Sum Up	3.157
3.13	Keywords	3.158
3.14	Questions for Discussion	3.158
	Unit-IV	
4.0	Aims and Objectives	4.161
4.1	Introduction	4.161
4.2	Tests of Significance based on χ^2 , t and F	4.161
4.3	χ^2 -Test for Goodness of Fit and Test for Independence of Attri	butes
4.4	Definition of Order Statistics and Statement of their Distribution	4.175
		4.178
4.5	Non-Parametric Tests	4.181
	4.5.1 Advantages and Disadvantages	4.182
	4.5.2 Comparison with Parametric Tests	4.183
4.6	Measurement Scale- Nominal, Ordinal, Interval and Ratio	4.184
4.7	One Sample Runs Test, Sign Test	
	4.7.1 Wilcoxon Signed Rank Tests (Single & Paired Samples)	4.190
4.8	Two Independent Sample Tests	4.192
	4.8.1 Median Test	4.192
	4.8.2 Wilcoxon – Mann-Whitney U Test	4.194
	4.8.3 Wald Wolfowitz's Runs Test	4.196
4.9	Answers to Check Your Progress	4.198
4.10	Let us Sum Up	4.200
4.11	Keywords	4.200
4.12	Questions for Discussion	4.201

First Year - M.Sc (Statistics)

PAPER IV-STATISTICAL INFERENCE

Unit – I

Population correlation coefficient and its properties. Bivariate data, scattered diagram, sample correlation coefficient, computation of correlation coefficient for grouped data.

Correlation ratio, Spearman's rank correlation coefficient and its properties. Principle of least squares, simple linear regression, correlation verses regression, properties of regression coefficients. Fitting of quadratic and power curves. Concepts of partial and multiple correlation coefficients (only for three variables). Analysis of categorical data, independence and association and partial association of attributes, various measures of association (Yule's) for two way data and coefficient of contingency (Pearson and Tcherprow), coefficient of colligation.

Unit – II

Concepts of population, parameter, random sample, statistic, sampling distribution and standard error. Standard error of sample mean(s) and sample proportion(s). Exact sampling

distributions- Statement and properties of χ^2 , t and F distributions and their interrelationships. Independence of sample mean and variance in random sampling from normal distributions.

Point estimation of a parameter, concept of bias and mean square error of an estimate. Criteria of good estimator- consistency, unbiasedness, efficiency and sufficiency with examples. Statement of Neyman's Factorization theorem, derivations of sufficient statistics in case of Binomial, Poisson, Normal and Exponential (one parameter only) distributions. Estimation by method of moments, Maximum likelihood (ML), statements of asymptotic properties of MLE. Concept of interval estimation. Confidence intervals of the parameters of normal population by Pivot method.

Unit – III

Concepts of statistical hypotheses, null and alternative hypothesis, critical region, two types of errors, level of significance and power of a test. One and two tailed tests, test function (non-randomized and randomized). Neyman-Pearson's fundamental lemma for Randomized tests. Examples in case of Binomial, Poisson, Exponential and Normal distributions and their powers. Use of central limit theorem in testing. Large sample tests and confidence intervals for mean(s), proportion(s), standard deviation(s) and correlation coefficient(s).

Unit – IV

Tests of significance based on χ^2 , t and F. χ^2 -test for goodness of fit and test for independence of attributes. Definition of order statistics and statement of their distributions.

Non-parametric tests- their advantages and disadvantages, comparison with parametric tests. Measurement scale- nominal, ordinal, interval and ratio. One sample runs test, sign test and Wilcoxon-signed rank tests (single and paired samples). Two independent sample tests: Median test, Wilcoxon –Mann-Whitney U test, Wald Wolfowitz's runs test.

OPERATION RESEARCH

I - M.Sc(STATISTICS) / II - Semester Choice Based Credit System(CBCS)

Authors

Prof. Bharathi Dr. A. Sudhakaraiah Department of Mathematics Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

UNIT - I

Page No.

1.0	Aims and Objectives	3
1.1	Introduction	3
1.2	Assumptions of LPP	4
1.3	Mathematical formulation	5
1.4	Graphical method of solution	9
1.5	Simplex method	13
1.6	Big-M method and Two phase method	21
	1.6.1 The Big-M-method (Penalty Method)	21
	1.6.2 The Phase Method	27
1.7	Dual simplex method	35
1.8	Let us Sum up	42
1.9	Keywords	42
1.10	Answers to 'Check Your Progress'	43
1.11	Questions for Discussion	53
1.12	Suggested Readings	54

UNIT - II

2.0	Aims and Objectives	57
2.1	Introduction	57
2.2	Importance o Integer Programming	58
2.3	Applications of Integer Programming	58
	2.3.1 Methods of integer programming	59
2.4	Gonory's Fractional Cut Algorithm	59
	(Or) Cutting Plane Method For Pure (All) I.P.P	
2.5	Mixed integer programming problem	67
2.6	Branch and bound techniques	72
2.7	Let us Sum up	78
2.8	Keywords	78
2.9	Answers to 'Check Your Progress'	78
2.10	Questions for Discussion	81
2.11	Suggested Readings	82

Lesson 3

	3.0	Aims and Objectives	83
	3.1	Introduction	83
	3.2	Mathematical Model of furmulation of TP	84
		3.2.1 Tabular form of transportation model	85
	3.3	General transportation problem	85
	3.4	Initial basic feasible solution	87
		3.4.1 North West Corner Method (NWCM) procedure	87
		3.4.2 Least Cost Method (LCM) procedure	89
		3.4.3 Vogel's Approximation Method (VAM) Procedure	92
	3.5	Optimal Solution	95
		3.5.1 Loops	95
		3.5.2 Stepping stone method procedure	96
		3.5.3 MODI method Procedure	97
	3.6	Degeneracy	106
	3.7	Let us Sum up	113
	3.8	Keywords	114
	3.9	Answers to 'Check Your Progress'	114
	3.10	Questions for Discussion	125
	3.11	Suggested Readings	126
Lesson	n 4		
	4.0	Aims and Objectives	127
	4.1	Introduction	127
	4.2	Hungarian Method	128
		4.2.1 Mathematical Representation of AP	128
		4.2.2 Definition and Assumptions of AP	128
		4.2.3 Assignment Model	129
		4.2.4 Solution Methods of Assignment Problem	129
		4.2.4 Alogorithm to find the Optimal Solution to AP	129
	4.3	Traveling salesman problem	135
	4.4	Let us Sum up	140
	4.5	Keywords	140
	4.6	Answers to 'Check Your Progress'	141
	4.7	Questions for Discussion	145
	4.8	Suggested Readings	146

UNIT - III

	5.0	Aims and Objectives	149
	5.1	Introduction	149
	5.2	Some basic terms	150
		5.2.1 Assumptions of Game theory	151
	5.3	Two-person zero-sum games	152
	5.4	The maxmini-minimax principle	152
	5.5	Games without saddle points-Mixed Strategies	155
		5.5.1 Algebraic method	155
	5.6	Graphic solution of 2 * n and m*2 games	158
	5.7	Dominance property	161
	5.8	Let us Sum up	169
	5.9	Keywords	169
	5.10	Answers to 'Check Your Progress'	169
	5.11	Questions for Discussion	175
	5.12	Suggested Readings	176
Lesson	16		
	6.0	Aims and Objectives	177
	6.1	Introduction	177
	6.2	Meaning & Purpose of Simulation	178
		6.2.1 Characteristics of the process of simulation	178
	6.3	Simulation Procedures	178
		6.3.1 Monte Carlo Simulation Technique	178
	6.4	Simulation: Its Application	180
	6.5	Simulation: Its Merits & Demerits (A) Merits	181
	6.6	Let us Sum up	182
	6.7	Keywords	182
	6.8	Answers to 'Check Your Progress'	182
	6.9	Questions for Discussion	183
	6.10	Suggested Readings	183
		UNIT - IV	

7.0	Aims and Objectives	187
7.1	Introduction	187
7.2	Need for Dynamic Programming	188
7.3	Bellman's Principle of Optimality	187

		7.3.1 Recursive Approach	189
		7.3.2 Solution of L.P.P By Dynamic Programming	190
,	7.4	Algorithm of DP	191
,	7.5	Let us Sum up	201
,	7.6	Keywords	201
,	7.7	Answers to 'Check Your Progress'	203
,	7.8	Questions for Discussion	205
,	7.9	Suggested Readings	206
Lesson	8		
:	8.0	Aims and Objectives	207
:	8.1	Introduction	207
:	8.2	Definition, Application and Assumptions	208
		8.2.1 Definition	208
		8.2.2 Application areas	208
		8.2.3 General Sequencing Problem	208
		8.2.4 Assumptions of Sequencing Problem	209
:	8.3	Types of sequencing problems	209
:	8.4	Processing n jobs through 2 machines	210
:	8.5	n jobs through 3 machines	214
		8.5.1 CDS method	218
:	8.6	Two jobs through m machines	220
:	8.7	Let us Sum up	225
:	8.8	Keywords	225
:	8.9	Answers to 'Check Your Progress'	225
:	8.10	Questions for Discussion	230
:	8.11	Suggested Readings	231
Lesson	9		
9	9.0	Aims and Objectives	233
9	9.1	Introduction	233
9	9.2	Network minimization	234
9	9.3	Shortest route problem	235
		9.3.1 Minimal Spanning Tree Problem	236
	9.4	Maximal-flow problem	237
(9.5	PERT and CPM	238
	9.6	PERT (Three Time Estimeate Approach)	240
	-	9.6.1 CPM Method of Time Cost Trade Off	241
	9.7	Let us Sum up	250
	/ • /	Let us sum up	250

9.8	Keywords	250
9.9	Answers to 'Check Your Progress'	251
9.10	Questions for Discussion	259
9.11	Suggested Readings	260

UNIT - V

10.0 Aims and Objectives	263
10.1 Introduction	263
10.2 Terminology	264
10.3 When Does a Queue Result?	264
10.4 The Elements of Queuing System	265
10.5 Costs Associated with Waiting Lines	267
10.6 Queue System : Salient Features	268
10.7 Queuing Models	272
10.8 Axioms of Poison Process	274
10.9 Operating Characteristics of Queue System	274
10.10 Model - I (M/M/1):(∞ /FIFO)	276
10.11 Model-II (M/M/1):(N/FIFO)	281
10.12 Model-III (M/M/C):(∞ / FIFO)	283
10.13 Model-IV (M/M/C):(N/ FIFO)	287
10.14 Let us Sum up	291
10.15 Keywords	292
10.16 Answers to 'Check Your Progress'	292
10.17 Questions for Discussion	294
10.18 Suggested Readings	295

Paper VI: OPERATION RESEARCH

Unit- 1

Linear Programming problem Mathematical formulation, assumptions in linear programming, graphical method of solution, simplex method, Big-M method and Two phase method, Dual simplex method.

Unit-2

Integer Programming Introduction, Gomory's cutting plane method, Fractional cut method-Mixed integer and branch and bound techniques.

Transportation Problem-General transportation problem, Finding an initial basic feasible solution, Loops in transportation tables, Degeneracy, Optimality method-MODI method.

Assignment Problem- Hungarian Method, Traveling salesman problem.

Unit-3

Game theory Introduction, two-person zero-sum games, some basic terms, the maxmini-minimax principle, games without saddle points-Mixed Strategies, graphic solution of 2 * n and m*2 games, dominance property.

 $\label{eq:simulation} Simulation \ Introduction, Definition of Monte-Carlo \ Simulation.$

Unit-4

Dynamic Programming Introduction, The Recursive equation approach, Algorithm, Solution of a L.P.P by Dynamic Programming.

Sequencing Models-Processing n jobs through 2 machines, n jobs through 3 machines, two jobs through m machines.

Networking Analysis CPM & PERT – Network minimization, shortest route problem, maximal-flow problem, Project scheduling, critical path calculations, PERT calculation.

Unit-5

Queuing Theory Introduction, Queuing system, Elements of Queuing system, Characteristics of Queuing system, Classification of Queuing Models, Poisson Queuing systems-Model I (M/M/1): (∞ :FIFO)-Characteristics of Model I and waiting time characteristics. Characteristics of (M/M/1):(N/FIFO), (M/M/C):(∞ /FIFIO), (M/M/C))

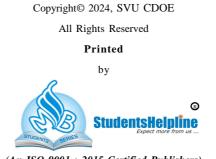
Suggested Readings:

- 1. Operation Research by Kanti Swarup, P.KGuptha, Man Mohan 11th edition Sultan Chand & Sons Publication.
- 2. Operation Research, Jaico Publishing House
- 3. Operation Research-An introduction by Hamdy A Taha. Prentice Hall.
- 4. Introduction To Management Science, Anderson, Thomson Learning, 11Edn.
- 5. Operation Research Applications and Algorithms, Winston, Thomson Learning, 4Edn.
- 6. Introduction to Operation Research by Hiller/Lieberman. McGraw Hill.

As per Choice Based Credit System (CBCS)

I - M.Sc(STATISTICS) / II - Semester

Authors Prof. Anjan Babu Prof. Subba Rao Dept. of Computer Science S.V. University Tirupati - 517502 AP


Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP-517 502

Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers)

326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 **Reg. Off.:** 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502

mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

ii

Problem Solving in 'C'

Outcomes

Upon successful completion of the course, a student will be able to:

- 1. Understand the evolution and functionality of a Digital Computer.
- 2. Apply logical skills to analyse a given problem.
- 3. Develop an algorithm for solving a given problem.
- 4. Understand 'C' language constructs like Iterative statements, Array processing, Pointers, etc.
- 5. Apply 'C' language constructs to the algorithms to write a 'C' language program.

Unit-I

General Fundamentals: Introduction to computers: Block diagram of a computer, characteristics and limitations of computers, applications of computers, types of computers, computer generations.

Introduction to Algorithms and Programming Languages: Algorithm - Key features of Algorithms, Flow Charts, Programming Languages - Generations of Programming Languages - Structured Programming Language- Design and Implementation of Correct, Efficient and Maintainable Programs.

Unit-II

Introduction to C: Introduction - Structure of C Program - Writing the first C Program - File used in C Program - Compiling and Executing C Programs - Using Comments - Keywords - Identifiers - Basic Data Types in C - Variables - Constants - I/O Statements in C - Operators in C - Programming Examples.

Decision Control and Looping Statements: Introduction to Decision Control Statements -Conditional Branching Statements - Iterative Statements - Nested Loops - Break and Continue Statement - Goto Statement

Unit-III

Arrays: Introduction - Declaration of Arrays - Accessing elements of the Array - Storing Values in Array - Operations on Arrays - one dimensional, two dimensional and multi dimensional arrays, character handling and strings.

Unit-IV

Functions: Introduction - using functions - Function declaration/ prototype - Function definition - function call - return statement - Passing parameters - Scope of variables - Storage Classes - Recursive functions.

Structure, Union, and Enumerated Data Types: Introduction - Nested Structures - Arrays of Structures - Structures and Functions - Union - Arrays of Unions Variables - Unions inside Structures - Enumerated Data Types.

Unit-V

Pointers: Understanding Computer Memory - Introduction to Pointers - declaring Pointer Variables - Pointer Expressions and Pointer Arithmetic - Null Pointers - Passing Arguments to Functions using Pointer - Pointer and Arrays - Memory Allocation in C Programs - Memory Usage - Dynamic Memory Allocation - Drawbacks of Pointers

Files: Introduction to Files - Using Files in C - Reading Data from Files - Writing Data to Files - Detecting the End-of-file - Error Handling during File Operations - Accepting Command Line Arguments.

iv

Content Problem Solving in 'C'

_

	Chapter-1: Introduction to Computers	
1.0	Objectives	1
1.1	Introduction	1
1.2	Overview of a Computer	2
	1.2.1 Characteristics	2
	1.2.2 Applications	3
	1.2.3 Limitations	4
1.3	Classification of Computers	4
1.4	Components of a Computer	5
1.5	Generations of Computers	13
1.6	Outcomes	16
1.7	Key Terms	16
1.8	Review Questions	17
1.9	Multiple Choice Questions	18
	Chapter-2: Introduction to Algorithms and Programming Languages	
2.0	Objectives	19
2.1	Introduction to Algorithms	19
2.2	Characteristics and Features of an Algorithm	20
2.3	Implementation of Algorithms	21
2.4	Simple Examples of Algorithms	22
2.5	Pseudo Code	23
	2.5.1 Pseudo Code Rules	24
	2.5.2 Advantages of Pseudo Codes	24
	2.5.3 Limitations of Pseudo Codes	24
2.6	Flow Charts	24
	2.6.1 Types of Flow Charts	26
	2.6.2 Advantages of Flowcharts	27
		$\left(\begin{array}{c} v \end{array} \right)$

	2.6.3	Differences between Flowchart and Algorithm	27
	2.6.4	Limitations of Flowcharts	27
	2.6.5	Simple Examples of the Flowchart	27
2.7	Progra	mming Languages	28
	2.7.1	Classification of Programming Languages	28
2.8	Struct	ared Programming Concept	31
2.9	Design	and Implementation of Correct, Efficient and Maintainable Programs	32
2.10	Outco	mes	33
2.11	Key T	erms	34
2.12	Exerci	ses	34
2.13	Multip	le Choice Questions	34
		Chapter-3: Introduction to 'C'	
3.0	Object	ives	37
3.1	Introd	action of 'C'	37
	3.1.1	Characteristics of 'C' Language	39
	3.1.2	'C' Features	39
	3.1.3	'C' Limitations	40
3.2	Basic	Structure of 'C' PrograM	40
3.3	Writin	g the First C Program	43
	3.3.1	Compiling and Executing C Programs	44
	3.3.2	Creating and Running Programs	44
	3.3.3	Syntax and Logical Errors in Compilation	46
3.4	Progra	m Statements	46
3.5	Using	Comments	47
3.6	'C' To	kens	47
	3.6.1	Keywords	48
	3.6.2	Identifiers	48
	3.6.3	Constants	49
	3.6.4	Escape Sequences	50
	3.6.5	Special Symbols	51
v	i		

	3.6.6	'C' Operators	51
	3.6.7	Variables	52
		3.6.7.1 Declaring Variables	54
		3.6.7.2 Initializing Variables	54
		3.6.7.3 Assigning Values to Variables	55
3.7	Basic I	Data Types in C	56
3.8	Operat	tors	60
	3.8.1	Arithmetic Operators	61
	3.8.2	Relational Operators	63
	3.8.3	Logical Operators	64
	3.8.4	Assignment Operators	66
	3.8.5	Increment and Decrement Operators	69
	3.8.6	Conditional Operators	70
	3.8.7	Bitwise Operators	72
	3.8.8	Special Operators	77
3.9	Expres	sions and Evaluation	80
3.10	Preced	ence and Associativity	82
3.11	Type C	Conversions	86
3.12	Type C	Casting	88
3.13	Input and Output Functions		
	3.13.1	Formatted Input and Output Functions	91
	3.13.2	Non-formatted Input and Output Functions	93
3.14	Additio	onal Programs	95
3.15	Outcor	nes	98
3.16	Key Te	erms	98
3.17	Exerci	ses	99
3.18	Multip	le Choice Questions	101
		Chapter-4: Control Statements	
4.0	Object	ives	107
4.1	Introdu	iction	107
			- vii

4.2	Statements					
4.3	Decisi	on making (or) Conditional Statements	108			
	4.3.1	if, if-else, nested if, nested if-else and else if Statements	109			
		4.3.1.1 if Statement (One-Way (if) Selection)	109			
		4.3.1.2 ifelse Statement (Two-way selection)	111			
		4.3.1.3 Nested if Statements	112			
		4.3.1.4 else-if Statement	113			
		4.3.1.5 Dangling else Problem	115			
		4.3.1.6 nested if-else Statements	116			
	4.3.2	Multiway Selection: switch case Statements	118			
4.4	Loopin	ng Statements	121			
	4.4.1	while Loop/while Statements	121			
	4.4.2	do-while Loop/do-while Statements	123			
	4.4.3	for Loop/for Statements	125			
	4.4.4	Use of Comma Operator in for Loop	127			
4.5	Nestec	l Loops	129			
4.6	Specia	l Control Statement	134			
	4.6.1	goto Statement	134			
	4.6.2	break Statement	136			
	4.6.3	continue Statement	137			
	4.6.4	Return Statement	139			
	4.6.5	exit Statement	140			
	4.6.6	Difference Between Break and Continue Statements	141			
	4.6.7	Null Statement	142			
4.7	Applic	eations of Loops	142			
4.8	Additi	onal Programs	143			
4.9	Factor	ing Methods	146			
4.10	Comm	on Programming Errors	149			
4.11	Outco	mes	152			
4.12	Key T	erms	152			
vii	viii					

4.13	Exerci	ses	153
4.14	Multip	le Choice Questions	154
		Chapter-5: Arrays and Strings	
5.0	Object	ives	165
5.1	Introdu	action	166
5.2	Arrays	Concepts	166
	5.2.1	Declaration of Arrays	168
	5.2.2	Initialization of Arrays	170
	5.2.3	Accessing Array Elements	172
	5.2.4	Storing Array Elements	174
5.3	Calcul	ating the Length of the Array	175
5.4	Using	Arrays in C	176
	5.4.1	Performing Operations on Arrays	177
	5.4.2	Arrays Limitations	178
5.5	Types	of Arrays	178
	5.5.1	One Dimensional Array	178
	5.5.2	Two Dimensional Arrays	181
	5.5.3	Multidimensional Arrays	184
	5.5.4	Comparison of Singledimensional and Multidimensional Arrays	186
5.6	Examp	oles of Two Dimensional Arrays	188
	5.6.1	Addition of Arrays	188
	5.6.2	Subtraction of Arrays	189
	5.6.3	Multiplication of Arrays	190
5.7	Comm	on Programming Errors	193
5.8	Strings		195
	5.8.1	Introduction	195
	5.8.2	Declaration of Strings	196
	5.8.3	Initialization of Strings	196
5.9	String	Header or 'C' Library Functions for Strings	197
			— ix

5.10	'C' Sti	rings	198
5.11	Handl	198	
5.12	String	Input/Output Functions	199
5.13	String	Handling/Manipulation Functions	202
	5.13.1	Header File"ctype.h"	206
5.14	Additi	onal Examples	209
5.15	Comm	non Programming Errors	212
5.16	Outco	mes	214
5.17	Key T	erms (214
5.18	Exerci	ses	215
5.19	Multip	ble choice Questions	215
		Chapter-6: Functions	
6.0	Object	tives	223
6.1	Introdu	uction	223
6.2	Design	ning Structured Programs	224
6.3	Conce	pts of Function	224
	6.3.1	Purpose of Function	225
6.4	Functi	ons in C	226
	6.4.1	Function Prototype Declaration	226
	6.4.2	Function Definition	226
	6.4.3	Function Calling	228
	6.4.4	Defining and Accessing of Functions	229
	6.4.5	Return Statement	229
	6.4.6	Characteristics of Function	230
	6.4.7	Advantages of Functions	230
6.5	Passin	g Arguments (or) Passing Parameters	231
	6.5.1	Formal Parameters and Actual Parameters	231
	6.5.2	Mechanism of Passing Parameters	232
		6.5.2.1 Call-by-Value Method	233
		6.5.2.2 Pass or Call by Reference	234

	6.5.3	Differences between Call-by-Value and Call-by-reference	235
	6.5.4	Passing Variable Number of Arguments to a Function	237
6.6	Void F	unctions	238
6.7	Function	on Invocation and Function Execution	238
6.8	Scope	of Variables	239
	6.8.1	Scope Rules	240
6.9	Storage	e Classes	242
	6.9.1	Auto Storage Class	243
	6.9.2	Extern Storage Class	243
	6.9.3	Register Storage Class	244
	6.9.4	Static Storage Class	245
	6.9.5	Comparison of Different Storage Class Variables	246
6.10	Passing	g Arrays to Functions	246
6.11	Standa	rd/Library functions	248
	6.11.1	Built-in Functions	250
6.12	Recurs	ion	252
	6.12.1	Recursive Functions	252
	6.12.2	Advantages of Recursion	253
	6.12.3	Limitations of Recursion	253
	6.12.4	Types of Recursion	256
6.13	Towers	s of Hanoi	258
6.14	Additio	onal Programs	261
6.15	Tips ar	nd Programming Errors	263
6.16	Outcor	nes	268
6.17	Key Te	ermS	268
6.18	Exerci	ses	269
6.19	Multip	le choice Questions	270
		Chapter-7: Pointers	
7.0	Object	ives	281
7.1	Introdu	iction	281
			xi

7.2	Pointers	
	7.2.1 Declaring Pointer Variables	282
	7.2.2 Assigning Pointers	283
	7.2.3 Initialization of a Pointer	284
	7.2.4 Accessing Pointer's Contents	285
7.3	Address and Indirection Operator	286
7.4	Uses of Pointers	287
7.5	Disadvantages of Pointers	287
7.6	Arrays and Pointers	288
	7.6.1 Relationship between Pointers and Arrays	291
7.7	Array of Pointers	292
7.8	Dynamic Memory Allocation	293
	7.8.1 Dynamic Allocation of Arrays	296
7.9	Operations on Pointers	299
	7.9.1 Pointer Arithmetic	299
	7.9.2 Pointer Expressions	300
7.10	Null Pointers	301
7.11	PassiNG Pointers as Arguments to Functions	302
7.12	Pointers to Functions	303
	7.12.1 Function Returning a Pointer	305
7.13	Difference between Array Name and Pointer	307
7.14	Additional Programs	307
7.15	Common Programming Errors	313
7.16	Outcomes	315
7.17	Key Terms	315
7.18	Exercises	315
7.19	Multiple choice Questions	316
	Chapter-8: Structures and Unions	
8.0	Objectives	323
8.1	Introduction	324
(xi	i)	

8.2	Declaring a Structure and its Members	324
	8.2.1 The Type Definition (typedef)	325
8.3	Initialization of a Structure	326
8.4	Accessing Members of a Structure	327
8.5	Assigning Values/Operations on Structures	328
8.6	Size of a Structure	329
	8.6.1 Using Sizeof Operator	330
	8.6.2 Without Using Sizeof Operator	330
8.7	Array of Structures	331
8.8	Differences between Arrays and Structure	334
8.9	Nested Structures	335
8.10	Structures and Functions	336
8.11	Introduction to Unions	338
	8.11.1 Declaring a Union and its Members	339
	8.11.2 Initialization of a Union	340
	8.11.3 Accessing Members of Union	341
8.12	Arrays of Unions Variables	341
8.13	Unions vs Structures	341
8.14	Enumerated Data Types	343
8.15	Additional Programs	344
8.16	Programming Errors	346
8.17	Outcomes	349
8.18	Key Terms	349
8.19	Exercises	349
8.20	Multiple Choice Questions	350
	Chapter-9: File Handling in C	
9.0	Objectives	355
9.1	Introduction	356
9.2	Using Files in C	356
9.3	Classification of Files	357
		xiii)

	9.3.1	Differences between Text and Binary Files	358
9.4	File St	ructure	358
9.5	Stream	15	359
9.6	File O _J	perations	360
	9.6.1	Opening File	361
	9.6.2	Reading File	363
	9.6.3	Writing to a File	363
	9.6.4	Closing Files	364
	9.6.5	State of File	366
	9.6.6	Appending Data to Existing Files	366
9.7	Standa	rd Library Input/Output Functions for Files	367
9.8	Detect	ing the End of File	369
9.9	Error H	Iandling Functions	371
9.10	Accep	ting Command Line Arguments	372
9.11	Additi	onal Programs	374
9.12	Outcom	nes	377
9.13	Exerci	se	378
9.14	4 Multiple Choice Questions		378

xiv

Analysis

I - M.Sc(STATISTICS) / II - Semester Choice Based Credit System(CBCS)

Authors

Prof. Srinath Dr. Jaya Subba Reddy Department of Mathematics Sri Venkateswara University

Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

Page No.

	Unit - I	1 - 54
1.1	Finite, countable and uncountable sets	
1.2	Metric spaces	
1.3	Compact sets	
1.4	Perfect sets	
1.5	Connected sets	
1.6	Exercise	
	Unit - II	55 - 94
2.1	Sequences in metric spaces	
	2.1.1Subsequences	
2.2	Cauchy sequences	
2.3	Upper and lower limits	
2.4	Some special sequences	
2.5	Absolute convergence	
2.6	Addition and Multiplication of series	
2.7	Rearrangements	
2.8	Exercise	
	Unit - III	95 - 138
3.1	Continuity	
3.2	Limits of functions	

- 3.3 Continuous functions
- 3.4 Continuity and compactness
- 3.5 Continuity and Connectedness

- 3.6 Discontinuties
- 3.7 Monotonic functions
- 3.8 Infinite limits and limits at infinity
- 3.9 Exercise

Unit - IV 139 - 186

- 4.1 Riemann stieltjes integral
- 4.2 Definition and existences of integral
- 4.3 Properties of integral
- 4.4 Integration and differentiation
- 4.5 Exercise

Unit - V

187 - 292

- 5.1 Sequences and series of functions
- 5.2 Uniform Convergence
- 5.3 Uniform Convergence and continuity
- 5.4 Uniform convergence and integration
- 5.5 Uniform convergence and differentiation
- 5.6 Equicontinuous family of functions
- 5.7 Weiestrass approximation theorem
- 5.8 The Lebeggue theory- set function
- 5.9 Construction of lebesgue measure
- 5.10 Measure spaces and functions
- 5.11 Simple functions
- 5.12 Lebesgue Integration
- 5.13 Comparison with Riemann integral
- 5.14 Integration of complex functions
- 5.15 Functions of class
- 5.16 Exercise

- I. Finite, countable and uncountable sets Metric spaces Compact sets -Perfect sets Connected sets. (2 questions to be set)
- II. Sequences in metric spaces Subsequences Cauchy sequences Upper and lower limits - Some special sequences. Absolute convergence - Addition and multiplication of series Rearrangements. (1 question to be set).
- III. Continuity Limits of functions Continuous functions Continuity and compactness Continuity and connectedness Discontinuities Monotornic functions Infinite and limits at infinity. (1 question to be set).
- IV. Riemann Stieltjes integral Definition and existences of integral Properties of integral- Intergation and differentiation. (2 questions to be set).
- V. Sequences and series of functions Uniform convergence Uniform convergence and continuity - Uniform convergence and integration - Uniform convergence and differentiation - Equicontinuous family of functions - Weierstrass approximation theorem. (2 questions to be set).

The Lebeggue theory - Set functions A construction of the Lebessque measure measure spaces -Measurable functions - Simple function - Integration - Comparison with Riemann integral - Integration of complex function - Functions of class L2. (2 questions to be set).

Text Books:

Walter Rudin: Principle of Mathematical Analysis (Third Edition) Mc. Graw Hill International Edition.