POLYMERS AND BIO-POLYMERS

I - M.Sc(Chemistry) / I - Semester Choice Based Credit System(CBCS)

- By Prof. N.V.S. Naidu Prof. N.Y. Sreedhar Dr. K. Seshaiah Department of Chemistry Sri Venkateswara University

Tirupati-517502, Andhra Pradesh, India

Year : 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) #326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Page No.

1.Poly	ymers	
1.0	Aims and Objectives	1
1.1	Introduction	
1.2	Importance of Polymers	3
1.3	Fundamentals of Polymers-monomers	5
	1.3.1 Repeat Units	8
	1.3.2 Degree of Polymerization	9
	1.3.3 Linear	10
	1.3.4 Branched and Network Polymers	12
1.4	Classification of Polymers Based on Mole	cular Forces 13
	1.4.1 Polymerization-condensation	18
	1.4.2 Addition	19
	1.4.3 Free radicals	23
	1.4.4 Ionic	23
1.5	Zieglar-Natta catalyst	25
1.6	Co-ordination polymerization	26
1.7	Synthesis and application of Nylons	28
1.8	Vinyl polymers-polyvinyl chloride (PVC)	
1.9	Diene Polymers-buna S.Phencl-formaldehyde 3	
1.10	Summary	33
1.11	Answer to check your progress	34
1.12	Exercise	34
	1.12.1 Long answer type questions	34
	1.12.2 Short answer type questions	34

UNIT - II

2. Polypeptides Andproteins

Aims and Objectives		35
Introduction		35
Methods of peptide synthesis-solid phase peptide synthesis		36
C-&B-	terminal residue determination	40
Classification		45
Proper	ties	48
Structu	re and conformations	51
2.6.1	Primary structure	52
2.6.2	Secondary structure	53
2.6.3	Teritary structure	54
	Introdu Method C-&B- Classif Proper Structu 2.6.1 2.6.2	Introduction Methods of peptide synthesis-solid phase peptide synthesis C-&B-terminal residue determination Classification Properties Structure and conformations 2.6.1 Primary structure 2.6.2 Secondary structure

	2.6.4 Quaternary structure	56
2.7	Summary	58
2.8	Answer to check your progress	58
2.9	Exercise	59
	2.9.1 Long answer type questions	59
	2.9.2 Short answer type questions	59

UNIT - III

3. Nucleic Acids

3.0	Aims and Objectives	61
3.1	Introduction	61
3.2	Pyrimidine base, Purine base and Nucleosides	68
3.3	DNA,RNA structure and conformations	70
3.4	Outlines of protein synthesis	74
3.5	Replication, transcription and translation	78
3.6	Summary	86
3.7	Answer to check your progress	86
3.8	Exercise	87
	3.8.1 Long answer type questions	87
	3.8.2 Short answer type questions	87

4. Enzymes

4.0	Aims and Objectives	89
4.1	Introduction	89
4.2	Nomenclature	91
4.3	Classification with examples	94
4.4	Functions and their uses	100
4.5	Co-Enzymes	103
	4.5.1 Pyridoxal phosphate, transamination	103
	4.5.2 Decarboxylation reactions of amino acids	106
4.6	Nicotinamide dinucleotides and flavin co-enzymes-in biological	
	oxidation-reduction reactions	107
4.7	Paridoxal phosphate	111
4.8	Summary	114
4.9	Answer to check your progress	114
4.10	Exercise	115
	4.10.1 Long answer type questions	115
	4.10.2 Short answer type questions	115

UNIT - V

5.Complex Molecules

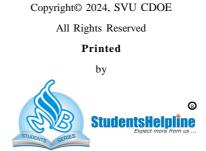
5.0	Aims and Objectives	117
5.1	Introduction	117
5.2	Importance	118
5.3	Functions of complex molecules	119
5.4	Synthesis of complex molecules	120
5.5	Vitamin D	121
5.6	11-oxoprogesterone	128
5.7	Summary	133
5.8	Answer to check your progress	133
5.9	Exercise	134
	5.9.1 Long answer type questions	134
	5.9.2 Short answer type questions	134

Notes

ORGANIC CHEMISTRY

I - *M*.*Sc*(*Chemistry*) / *I* - *Semester Choice Based Credit System*(*CBCS*)

- By Prof. N.V.S. Naidu Prof. N.Y. Sreedhar Dr. K. Seshaiah Department of Chemistry Sri Venkateswara University


Tirupati-517502, Andhra Pradesh, India

Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers)

326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 **Reg. Off.:** 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Page No.

1.Nature of bonding in organic molecules and Aromaticity		
1.0	Aims and Objectives	1
1.1	Introduction	2
1.2	Delocalised chemical bonding - conjugation	2
	1.2.1 Cross conjugation	5
1.3	Resonance	5
1.4	Hyperconjugation	6
1.5	Tautomerism	8
1.6	Huckel's rule and the concept of aromaticity	10
	1.6.1 Aromaticity in benzenoid compounds and non-benzenoid	
	Compounds	11
1.7	Alternant and non alternant hydrocarbons	15
1.8	Metallocenes Ferrocene	16
	1.8.1 Azulene	17
	1.8.2 Fulvenes	17
	1.8.3 Annulenes	18
1.9 Ai	nti aromaticity	19
	1.9.1 Pseudo Aromaticity	20
	1.9.2 Homo Aromaticity	20
1.10	Summary	21
1.11	Answer to check your progress	21
1.12	Exercise	21
	1.12.1 Long answer type questions	21
	1.12.2 Short answer type questions	21
UNIT - II		

2. Stereo Chemistry and Conformational Analysis

2.0	Aims and objectives	23
2.1	Introduction	24
2.2	Optical Isomerism, Molecular symmetry and Chirality	24
2.3	Stereoisomers- Classification	26
	2.3.1 Configuration	26
	2.3.2 R, S nomenclature, Axial Chirality	27
2.4	Stereochemistry of allenes, spiranes	30
2.5	Biphenyl derivatives and atropisomerism	32

	2.5.1 Planar chirality Ansa compounds	33
2.6	Geometrical isomerism: E, Z nomenclature	
2.7	Physical and Chemical methods of determining the configuration	
	of geometrical isomers	35
2.8	Stereoisomerism in cyclic compounds	38
2.9	Conformational Analysis	40
	2.9.1 Conformations of acyclic molecules2.9.2 Alkenes and substituted alkanes	41 42
	2.9.3 Compounds having intramolecular hydrogen bonding	43
2.10	Conformations of Cyclohexane	44
	2.10.1 Mono and disubstituted cyclohexanes	45
2.11	Summary	46
2.12	Answer to check your progress	47
2.13	Exercise	47
	2.13.1 Long answer type questions	47
	2.13.2 Short answer type questions	47

UNIT - III

3. Reactive Intermediates

3.0	Aims and Objectives	49
3.1	Introduction	49
3.2	Generation	50
	3.2.1 Structure and stability	51
	3.2.2 Reactivity of carbocations	53
3.3	Carbanions	54
3.4	Free radicals	56
3.5	Carbenes	59
3.6	Nitrenes	62
3.7	Arynes	63
3.8	Summary	65
3.9	Answer to check your progress	65
3.10	Exercise	66
	3.10.1 Long answer type questions	66
	3.10.2 Short answer type questions	66

UNIT - IV

4. Substitution Reactions

4.0	Aims and objectives	68
4.1	Introduction	68

4.2	Aliphatic Nucleophilic substitutions, the S_N^{-1} , S_N^{-2} mechanisms	68
	4.2.1 The neighbouring group mechanism	74
	4.2.2 Neighbouring group participation by σ and π -bonds,	
	anchimeric as sistance	77
4.3	Classical and nonclassical carbocations	79
	4.3.1 Phenonium ions, norbornyl system	80
	4.3.2 Common carbocation rearrangements – primary, secondar	У
	and tertiary	81
4.4	The S_N^{-1} mechanism	83
4.5	Reactivity effects of substrate, attacking nucleophile leaving gro	up
	and reac-tion medium	84
4.6	Aromatic Nucleophilic Substitution	88
	4.6.1 The S_N^{-1} Ar, S_N^{-1} and benzyne mechanisms	88
	4.6.2 Reactivity- effect of substrate, structure	91
	4.6.3 Leaving group and attacking nucleophile	92
4.7	The Sommelet- Hauser and Smiles Rearrangements	92
4.8	Elimination Reactions	93
	4.8.1 Type of elimination reactions, mechanisms	94
	4.8.2 Stereochemistry and Orientation	97
	4.8.3 Hoffmann and Saytzeff rules	98
	4.8.4 Syn elimination versus anti-elimination	98
	4.8.5 Competition between elimination and substitution	99
	4.8.6 Factors influencing elimination and substitution reaction	100
	4.8.7 Dehydration, dehydrogenation, dehalogenation,	
	decarboxylative eliminations	101
4.9	Summary	104
4.10	Answer to check your progress	104
4.11	Exercise	105
	4.11.1 Long answer type questions	105
	4.11.2 Short answer type questions	105

UNIT - V

5. Addition Reactions

5.0	Aims and objectives	107
5.1	Introduction	107
5.2	Addition to Carbon Carbon Multiple Bonds	
	5.2.1 Mechanistic and stereochemical aspects of addi	tion reactions
	involving electrophiles	108
	5.2.1.1 Nucleophiles and free radicals	110

5.3	Region and chemoselectivity	112
	5.3.1 Orientation and reactivity	112
	5.3.2 Hydrogenation of double bond and triple bonds	114
	5.3.3 Hydrogenation of aromatic rings, Hydroboration	115
5.4	Michael addition reaction	117
5.5	Addition to $C = O$: Cram's rule	117
	5.5.1 Claisen – Schmidt	119
	5.5.2 Claisen, Dieckman	119
	5.5.3 Benzoin and Witiig reaction	120
5.6	Summary	122
5.7	Answer to check your progress	122
5.8	Exercise	123
	5.8.1 Long answer type questions	123
	5.8.2 Short answer type questions	123

NATURAL PRODUCTS

I - *M*.*Sc*(*Chemistry*) / *I* - *Semester Choice Based Credit System*(*CBCS*)

- By Prof. Venkat Rao Prof. N.Y. Sreedhar Dr. K. Seshaiah Department of Chemistry Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

Copyright© 2024, SVU CDOE All Rights Reserved **Printed** by

(An ISO 9001 : 2015 Certified Publishers)

326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 **Reg. Off.:** 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Page No.

1. Alk	aloids	
1.0	Aims and Objectives	1
1.1	Introduction	1
1.2	Occurence	3
1.3	Isolation	6
1.4	General methods of structure elucidation and physiological action	n 18
1.5	Degradation, Structure	22
1.6	Stereochemistry	26
1.7	Synthesis of Atropine, Quinine and pepaverine	37
1.8	Summary	42
1.9	Answer to check your progress	43
1.10	Exercise	43
	1.10.1 Long answer type questions	43
	1.10.2 Short answer type questions	43
	UNIT - II	

2.Terpenoids

2.0	Aims and Objectives	45
2.1	Introduction	45
2.2	Occurence	46
2.3	Isolation	49
2.4	General methods of structure determination	51
2.5	Isoprene rule	56
2.6	Strucure determination	60
2.7	Stereochemistry	61
2.8	Synthesis of the following representative molecules	63
	2.8.1 Terpeniol, geraniol and abietic acid	65
2.9	Summary	82
2.10	Answer to check your progress	82
2.11	Exercise	83
	2.11.1 Long answer type questions	83
	2.11.2 Short answer type questions	83
	UNIT - III	

3. Steroids

3.0	Aims and Objectives	85
3.1	Introduction	85
3.2	Occurence	86

3.3	Nomenclature	87	
	3.3.1 Basic Skeleton	89	
3.4	Diel's hydrocarbon	90	
3.5	Structure determination of Cholesterol and ergosterol	102	
3.6	Summary		
3.7	Answer to check your progress		
3.8	Exercise	114	
	3.8.1 Long answer type questions	114	
	3.8.2 Short answer type questions	115	
	UNIT - IV		

4. Harmones and Bile Acids

4.0	Aims and Objectives	117
4.1	Introduction	117
4.2	Strucutre and synthesis of Androsterone	122
4.3	Estrone	127
4.4	5α -Cholanic Acid, 5β -Cholanic Acid	130
4.5	Summary	137
4.6	Answer to check your progress	137
4.7	Exercise	138
	4.7.1 Long answer type questions	138
	4.7.2 Short answer type questions	138
	UNIT - V	

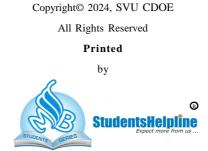
5. Flavonoids and Isoflavonoids

5.0	Aims and Objectives	139
5.1	Introduction	139
5.2	Occurrence	140
5.3	Nomenclature and general methods of structure determination	145
5.4	Isolation and synthesis of Apigenin, Querecetin, Daidzein	147
5.5	Biosynthesis of Flavonoids	150
5.6	Acetate pathway and Shikimic acid pathway	152
5.7	Biological importance of flavonoids	153
5.8	Summary	156
5.9	Answer to check your progress	156
5.10	Exercise	157
	5.10.1 Long answer type questions	157
	5.10.2 Short answer type questions	157

HETROCYCLIC CHEISTRY CHEMOTHERAPHY AND PROSTAGLADINS

I - M.Sc(Chemistry) / I - Semester Choice Based Credit System(CBCS)

- By


Prof. Venkat Rao Prof. N.Y. Sreedhar Dr. K. Seshaiah Department of Chemistry Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Page No.

61

1.Hete	erocycles	0
1.0	Aims and Objectives	1
1.1	Introduction	1
1.2	Nomenclature	2
1.3	Synthesis and reactions of three membered heterocycles	12
1.4	Oxirane, four membered heterocycles	18
1.5	Thictane, five membered heterocycles	19
1.6	Pyrazole and Benzofused heterocycles	22
1.7	Indole	26
1.8	Summary	27
1.9	Answer to check your progress	28
1.10	Exercise	28
	1.10.1 Long answer type questions	28
	1.10.2 Short answer type questions	29
	UNIT - II	

2.Antimalarials

2.0	Aims and Objectives		31
2.1	Introdu	ction	31
2.2	Chemo	therapy	34
2.3	Synthe	sis and activity of antimalarial drugs	39
2.4	Quinol	ine group	42
	2.4.1	Quinine	44
2.5	acridin	e group	45
	2.5.1	Quinacrine	50
2.6	Guanid	line group	51
	2.6.1	Paludrine	54
2.7	Summa	ary	58
2.8	Answe	r to check your progress	58
2.9	Exercise		
	2.9.1	Long answer type questions	58
	2.9.2	Short answer type questions	59
		UNIT - III	

3. Antibiotics

3.0 Aims and Objectives

3.1	Introduction	61
3.2	General characteristics	63
3.3	Structure-activity relationships	68
3.4	Synthesis and activity of antibiotics	71
3.5	Penicilline and tetracyclins	74
3.6	Summary	90
3.7	Answer to check your progress	90
3.8	Exercise	91
	3.8.1 Long answer type questions	91
	3.8.2 Short answer type questions	92

4. Vitamins

Aims and Objectives	93
Introduction	93
Definitions, occurrence	95
Strutural formulae and physiological functions of Vitamin A, B2, J	B6 99
Nicotin acid	118
Summary	124
Answer to check your progress	124
Exercise	124
4.7.1 Long answer type questions	124
4.7.2 Short answer type questions	125
	Introduction Definitions, occurrence Strutural formulae and physiological functions of Vitamin A,B2, Nicotin acid Summary Answer to check your progress Exercise 4.7.1 Long answer type questions

UNIT	- V
------	-----

5. Prostaglandins

5.0	Aims and Objectives	127
5.1	Introduction	127
5.2	Occurrence, nomenclature	128
5.3	Classification	130
5.4	Physiological effects of prostaglandins	133
5.5	Structure and synthesis of PGE1, PGE2	140
5.6	Summary	151
5.7	Answer to check your progress	151
5.8	Exercise	151
	5.8.1 Long answer type questions	151
	5.8.2 Short answer type questions	152

QUANTITATIVE DATA, ANALYTICAL, ELECTRO CHEMICAL AND SEPARATION TECHNIQUES

I - M.Sc(Chemistry) / II - Semester Choice Based Credit System(CBCS)

- By Prof. K.S. Reddy Prof. A. Krishnaiah Dr. P. Chiranjeevi Department of Chemistry Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Year : 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Page No.

Unit-I

1.0	Aims and Objectives	1
1.1	Introduction	2
1.2	Definition of Error and Uncertainity	5
1.3	Types of Errors	7
1.4	Distribution of Random Errors	11
1.5	Precision and Accuracy	12
1.6	Standard Deviation	16
1.7	Relative Standard Deviation	16
1.8	Confidential Limit	17
1.9	Statistical Treatment of Data – F test, T test and Q test	18
1.10	Method of Least Squares	27
1.11	Significant Figures	29
1.12	Uncertainity Evaluation	32
1.13	Use of Spread Sheets in Analytical Chemistry and	
	Reporting Data	34
1.14	Let us Sum Up	37
1.15	Keywords	37
1.16	Answers to Check Your Progress	39
1.17	Questions for Discussion	41

Unit-II

2.0	Aims	and Objectives	43
2.1	Solve	nt Extraction	44
	2.1.1	General Introduction	44
	2.1.2	Factors Favouring Solvent Extraction	46
	2.1.3	Quantitative Treatment of Solvent Extraction	50
	2.1.4	Extraction Reagents	52
	2.1.5	Applications	54
		2.1.5.1 Determination of Ferric ion as Chloride	54
		2.1.5.2 Determination of Molybdenum by	
		Thiocyanate Method	57
		2.1.5.3 Determination of Silver by Extraction as its	Ion
		Association Complex with 1,10-phenanthrol	ine and
		Pyrogallol Red	58

2.2	Ion-Exc	change Chromatography	60
	2.2.1	General Introduction	60
	2.2.2	Action of Ion-exchange Resins	61
	2.2.3	Ion-exchange Chromatography	63
	2.2.4	Ion-exchange Equilibria	65
	2.2.5	Ion-exchange Capacity and its Determination	67
	2.2.6	Applications	68
		2.2.6.1 Determination of Total Cation Concentration in Water	69
		2.2.6.2 Separation of Fluoride with Aid of Cation Exchanger	69
		2.2.6.3 Separation of Cl and Br using Anion Exchanger	72
2.3	Let us S	Sum Up	75
2.4	Keywo	rds	76
2.5	Answer	rs to Check Your Progress	76
2.6	Questic	ons for Discussion	78
		Unit-III	
3.0	Aims an	ud Objectives	80
3.1		ction, Definitions, Classifications in Chromatography	80
3.2		tion Column Chromatography	83
	3.2.1	Types of Columns, Experimental Requirements,	
		Development of Column	86
	3.2.2	Factors Affecting Column Efficiency	87
	3.2.3	Applications and Experiments	90
	3.2.4	Separation of (1) Methylene Blue and Malachite Green;	
		(2) Metal ions and; (3) Chlorophylls and Carotenoids	92
3.3	Paper C	hromatography	95
	•	Theory, Principles and Techniques. Development of Chromatog (Ascending and Descending), Two Dimensional and Multi	gram
		Dimensional Paper Chromatography	96
	3.3.2	Measurement of Rf Values	100
	3.3.3	Applications and Experiments	101
	3.3.4	Separation of: (1) Amino Acids (2) Cations and (3) Complexes	101
3.4	Thin La	ayer Chromatography	105
	3.4.1	Preparation and Development of Plates	105
	3.4.2	Advantages of TLC, Applications and Experiments	110
	3.4.3	Separation of: (1) Ink Pigments (2) Dyes and (3) Amino Acids	111
	3.4.4	High Performance, Thin Layer Chromatography (HPTLC),	
		Features and Applications	116
3.5	Gas Ch	romatography	119
	3.5.1	Principles and Theory, Instrumentation	119

	3.5.2	Columns and Detectors	126
	3.5.3	Types of Chromatograms	128
	3.5.4	Analysis of Elution Peaks	129
	3.5.5	Applications in Qualitative and Quantitative Analysis	130
3.6	High P	Performance Liquid Chromatography	135
	3.6.1	Introduction, Characteristic Features of HPLC	135
	3.6.2	Comparison of Super Critical Fluid, Fluid Chromatogra	phy
		with HPLC and GLC	136
	3.6.3	Principle of HPLC, Instrumentation; Components	137
	3.6.4	Types of Detectors	141
	3.6.5	Applications HPLC on the Separation of Inorganic, Or Pharmaceutical Compounds	rganic and 145
3.7	Let us	Sum up	149
3.8	Keywo	ords	150
3.9	Answe	ers to Check Your Progress	150
3.10) Questi	ons for Discussion	152
		Unit-IV	
4.0	Aims a	nd Objectives	153
4.1	Polaro	graphy	154
		Principle, Advantages of Dropping Mercury Electrode, I Current, Migration Current	Diffusion 154
		Half Wave Potential	160
	4.1.3	Ilkovic Equation	162
	4.1.4	Reversible and Irreversible Polarographic Processes	164
	4.1.5	Quantitative Polarographic Analysis	167
4.2	Amper	ometric Titrations	168
	4.2.1	Principle	169
	4.2.2	Determination of Lead using Oxalic Acid Titration Curv	ves173
	4.2.3	Determination of Nickel using Dimethylglyoxime	174
4.3	Cyclic	Voltammetry: Principle	175
	4.3.1	Randles-Sevcik Equation(only statement & no derivatio	n) 181
	4.3.2	Criteria for the Cyclic Volatmograms for Reversible, Irre	eversible,
	(Quasi-Reversible Waves	182
	4.3.3	Identification of Intermediates in Organic Reactions usin	ng Cyclic
		Voltammetry	186
4.4	Let us	sum up	194
4.5	Keywo	ords	194
4.6	Answe	ers to Check Your Progress	195
4.7	Questi	ons for Discussion	196

	Unit-V	
5.0	Aims and Objectives	199
5.1	Spectrophotometry	199
	5.1.1 Beer -Lambert law	200
	5.1.2 Method of Analysis and Applications	209
	5.1.3 Examples	215
5.2	Spectrofluorimetry	218
	5.2.1 Basics of the Method and Applications	220
	5.2.2 Examples	225
5.3	Flame Photometry and Flame Emission Spectroscopy	226
	5.3.1 Principles	227
	5.3.2 Types of Flames and Types of Burners	229
	5.3.3 Types of Instruments Used	233
	5.3.4 Flame Photometer and Experimental Technique	236
	5.3.5 Interferences: Chemical Reactions in Flames, Dissociation	Equilibria
	Ionization in Flames, use of Organic Solvents	239
	5.3.6 Applications	244
	5.3.7 Advantages & Disadvantages	244
	5.3.8 Limitations	245
	5.3.9 Example of Water analysis	
5.4	Atomic Absorption Spectroscopy, Introduction, Principles	247
	5.4.1 Relation between Flame Emission & Atomic Absorption	249
	5.4.2 Instrumentation	250
	5.4.3 Interferences, Background Correction	253
	5.4.4 Applications	259
5	.5 Let us Sum up	260
5	.6 Keywords	260
5	7 Answers to Check Your Progress	261
5	.8 Questions for Discussion	262

I - M.Sc(Chemistry)

PAPER – V: Quantitative Data, Analytical, Electro Chemical and Separation Techniques

Unit 1: STATISTICAL TREATMENT OF DATA

Definition of error and uncertainity; Types of errors; Distribution of random errors; Precision and Accuracy; Standard deviation, Relative standard deviation; Confidential limit; Statistical treatment of data – F test, T test and Q test; Method of least squares; Significant figures, uncertainity evaluation, use of spread sheets in analytical chemistry and reporting data.

UNIT-2: SOLVENT EXTRACTION AND ION EXCHANGE

- **A. Solvent Extraction** General introduction -factors favouring solvent extraction. Quantitative treatment of solvent extraction - Extraction reagents. <u>Applications:</u>
- (1). Determination of ferric ion as chloride.
- (2). Determination of Molybdenum by thiocyanate method.
- (3). Determination of silver by extraction as its ion association complex with 1,10phenanthroline and pyrogallol red.

B. Ion exchange chromatography

General introduction. Action of ion exchange resins. Ion exchange chromatography. Ion exchange equilibria. Ion exchange capacity and its determination. Applications :

- (1). Determination of the total cation concentration in water.
- (2). Separation of the fluoride with the aid of cation exchanger.
- (3). Separation of Cl⁻ and Br⁻ using anion exchanger

UNIT-3: CHROMATOGRAPHIC METHODS

Introduction, Definitions, Classifications in Chromatography.

A. Adsorption column chromatography: Types of columns, Experimental requirements, Development of column, Factors affecting column efficiency, Applications and experiments, Separation of (1) Methylene Blue and malachite green; (2) Metal ions and; (3) Chlorophylls and carotenoids.

B. Paper Chromatography :Theory, Principles and techniques. Development of chromatogram (Ascending and Descending), Two dimensional and Multi dimensional paper Chromatography, Measurement of R_f values, Applications and experiments, Separation of : (1) Amino acids (2) Cations and (3) Complexes.

C. Thin layer Chromatography : Preparation and development of plates. Advantages of TLC, Applications and Experiments – Separation of : (1) Ink Pigments (2) Dyes and (3) Amino acids. High Performance , Thin Layer Chromatography (HPTLC), Features and Applications.

D. Gas Chromatography: Principles and theory, Instrumentation – Columns and detectors, Types of chromatograms. Analysis of elution peaks, Applications in qualitative and quantitative analysis.

E. High Performance Liquid Chromatography: Introduction, characteristic features of HPLC, comparison of super critical fluid, fluid chromatography with HPLC and GLC; Principle of HPLC, Instrumentation; Components, Types of detectors. Applications HPLC on the separation of inorganic, Organic and Pharmaceutical compounds.

UNIT-4. ELECTROANALYTICAL TECHNIQUES

- A. **Polarography:** Principle, Advantages of Dropping Mercury Electrode, diffusion current, migration current, half wave potential, ilkovic equation, reversible and irreversible polarographic processes, Quantitative polarographic analysis
- **B. Amperometric titrations:** Principle Determination of lead using oxalic acid titration curves, Determination of nickel using dimethylglyoxime
- **C.** Cyclic Voltammetry: Principle, Randles-Sevcik equation (only statement and no derivation), Criteria for the cyclic volatmograms for reversible, irreversible, quasi-reversible waves, Identification of intermediates in organic reactions using cyclic voltammetry.

UNIT – 5 : ANALYTICAL SPECTROSCOPY

- (a) **Spectrophotometry**, Beer -Lambert law, Method of analysis and applications examples
- (b) Spectrofluorimetry -Basics of the Method and Applications -Examples
- (c) Flame photometry and Flame Emission Spectroscopy, Principles, Types of flames and types of burners. Types of instruments used, flame photometer and experimental technique, Interferences: chemical reactions in flames. Dissociation equilibria, ionization in flames, use of organic solvents. Applications, advantages & disadvantages, limitations. –Example of Water analysis
- (d) Atomic Absorption Spectroscopy, Introduction, Principles, relation between flame emission and atomic absorption. Instrumentation, Interferences, background correction, Applications.

ORGANIC SPECTROSCOPY, DRUG DESIGN,CONFORMATIONALANALYSIS, & HETEROCYCLIC COMPOUNDS

I - M.Sc(Chemistry) / II - Semester Choice Based Credit System(CBCS)

- By Prof. K.S. Reddy Prof. A. Krishnaiah Dr. P. Chiranjeevi Department of Chemistry Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Year : 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Page No.

		ge 110.
	Unit-I	
1.0	Aims and Objectives	3
1.1	¹³ CNMR – Spectroscopy	3
1.2	CW and PFT Techniques	9
1.3	Types of CMR Spectra–Undecoupled Proton Decoupled	17
1.4	Off–Resonance Decoupled (SFORD): ¹³ C–Chemical Shifts, Affecting the Chemical Shifts Homonuclear (¹³ C – ¹³ CJ), an Heteronuclear (¹³ C– ¹ H, ¹³ C– ² HJ) Couplings	
1.5	Applications of ¹³ C–NMR Spectroscopy in Confirmation of S and Stereochemistry of Organic Molecules and in Determin Reaction Mechanism and Dynamic Processes of Organic Re Examples	ing the
1.6	Multipulse Techniques: HOMO and HETERO – 2D–J– Rese Spectra	olved 31
1.7	Explanation of the Principle, Application to Structure Elucidat Simple Organic Molecules	tion of 43
1.8	Let us Sum Up	48
1.9	Keywords	49
1.10	Answers to Check Your Progress	50
1.11	Questions for Discussion	51
	Unit-II	
2.0	Aims and Objectives	55
2.1	Introduction	56
2.2	Basic Principles-Instrumentation-Magnetic Sector Instrument	nts 57
2.3	Ion Production Electron Impact Ionization-Chemical Ionizatio	on 58
2.4	Mass spectra-Molecular Ion, Types of Ions in Mass Spectra	60
2.5	Effect of Isotopes on Mass Spectra	62
2.6	Mc Lafferty rearrangement	63
2.7	Ortho Effect – Meta Stable Ions	63
2.8	Nitrogen Rule	65
2.9	General Fragmentation Modes	66
2.10	Mass Spectral Fragmentation of Some Classes of	
	Organic Compounds	67
2.11	Optical Rotatory Dispersion	71

2.12	Optical Rotation	73
2.13	Circular Birefringence, Circular Dichroism and Cotton Effect	74
2.14	Plain Curves and Anomalous Curves and their Applications	76
2.15	Axial Halo Keto Rule and Octant Rule	77
2.16	Application to the Study of Configuration and	
	Conformations of Organic Molecules	81
2.17	Let us Sum Up	82
2.18	Keywords	83
2.19	Answers to Check Your Progress	84
2.20	Questions for Discussion Unit-III	85
3.0	Aim and Objectives	89
3.1	Introduction to Drug Discovery	89
3.2	Drug Discovery without Lead: Pencillins as Example	100
3.3	Serendipity	102
3.4	Lead Discovery	103
3.5	Random and Non-Random Screening of Natural Products-	
	Medical Folklore, Synthetic Banks	105
3.6 1	Existing Drugs from Natural Ligand or Modular	
	Combinatorial Synthesis	107
3.7	Computer Aided Designing (introductory treatment only)	108
3.8	Drug Metabolism Studies: Phase I and Phase II Metabolism	109
3.9	Clinical Observations: Phase- I, Phase- II, Phase- III and Phase-	
	IV Trials (introductory treatment only)	112
3.10	Principle of Drug Design Against Agonist, Antagonist Drugs	114
3.11	Let us Sum Up	116
3.12	Keywords	117
3.13	Answers to Check Your Progress	118
3.14	Questions for Discussion	119
	Unit-IV	
4.0	Aims and Objectives	123
4.1	Introduction to Conformational Isomerism and the Concept of Dynam	
	Stereochemistry	124
4.2	Study of Conformations in Ethane and 1, 2-Disubstituted Ethane Derivlike Butane, Dihalobutanes, Halohydrin, Ethylene Glycol, Butane-2,3-I	
	Amino Alcohols and 1,1,2,2-Tetrahaobutanes	126

4.3	Klyne-Prelog Terminology for Conformers and Torsion Angle	ès	129
4.4	Conformations of Unsaturated Acyclic Compounds (1-Butene Propionaldehyde and Butanone)	e,	131
4.5	Conformational Diastereoisomers and Conformational Enanti	omers	134
4.6	Use of Physical and Spectral Methods in Conformational Ana		136
4.7	Conformation Effects on the Stability and Reactivity of Acycl Diastereoisomers-Steric and Stereo Electronic Factors-Exam	lic	140
4.8	Conformation and Reactivity: The Winstein-Holness Equation Curtin-Hammett Principle	n and the 145	e
4.9	Conformations of Cyclohexanes, Mono and Disubstituted Cyc	clohexar 147	nes
4.10	Stereochemistry of Decalins	150	
4.11	Factors Governing the Reactivity of Axial and Equatorial Sub	stituents	in
	Cyclohexanes	154	
4.12	Let us sum up	156	
4.13	Keywords	156	
4.14	Answers to Check Your Progress	156	
4.15	Questions for discussion	158	
	Unit-V		
5.0	Aim and Objective	163	
5.1	Introduction	163	
5.2	Importance of Heterocyclic Compounds as Drugs	164	
5.3	Nomenclature of Heterocyclic Systems based on Ring Size	165	
5.4	Number and Nature of Hetero Atoms	169	
5.5	Synthesis and Reactivity	172	
	5.5.1 Pyridine	172	
	5.5.2 Quinoline	176	
	5.5.3 Isoquinoline	178	
	5.5.4 Indole	181	
	5.5.5 Pyrazole and Benzofuran	184	
	5.5.6 Benzothiophene	188	
	5.5.7 Thiazole, Oxazole, Pyrimidine	192	
5.6	Let us Sum Up	199	
5.7	Keywords	200	
5.8	Answers to Check Your Progress	201	
5.9	Questions for Discussion	202	

I - M.Sc(Chemistry)

PAPER – VI ORGANIC SPECTROSCOPY, DRUG DESIGN, CONFORMATIONAL ANALYSIS, & HETEROCYCLIC COMPOUNDS

UNIT - 1: ¹³C - NMR SPECTROSCOPY

¹³CNMR – Spectroscopy – CW and PFT techniques. Types of CMR spectra–undecoupled proton decoupled. Off–resonance decoupled (SFORD): ¹³C–chemical shifts, factors affecting the chemical shifts Homonuclear (¹³C – ¹³CJ), and heteronuclear (¹³C–¹H, ¹³C–²HJ) couplings. Applications of ¹³C–NMR Spectroscopy in confirmation of structure and stereochemistry of organic molecules and in determining the reaction mechanism and dynamic processes of organic reactions – examples. Multipulse techniques : HOMO and HETERO – 2D–J– resolved spectra. Explanation of the principle, application to structure elucidation of simple organic molecules.

UNIT - 2:APPLICATIONS OF MASS SPECTROMETRY AND OPTICAL ROTATORY DISPERSION

Mass Spectroscopy : Basic principles-instrumentation-magnetic sector instruments. Ion production electron impact ionization –chemical ionization. Mass spectra-Molecular ion –types of ions in mass spectra. Effect of isotopes on mass spectra. Mc Lafferty rearrangement. Ortho effect – Meta stable ions. Nitrogen rule. General fragmentation modes. Mass spectral fragmentation of some classes of organic compounds.

Optical Rotatory Despersion : Optical rotation. Circular birefringence, circular dichroism and cotton effect. Plain curves and anomalous curves and their applications. Axial halo keto rule and octant rule. Application to the study of configuration and conformations of organic molecules.

UNIT-3: DRUG DESIGN

Introduction to drug discovery. Drug discovery without lead – serendipity – Pencillins as example. Lead discovery – random and non–random screening of natural products – medical folklore, synthetic banks. Existing drugs from natural ligand or modular combinatorial synthesis. Computer aided designing (introductory treatment only). Drug metabolism studies – Phase I and Phase II metabolism. Clinical observations. Phase – I, Phase – II, Phase – III and Phase – IV trials (introductory treatment only).

Principle of drug design against agonist, antagonist drugs.

UNIT-4: CONFORMATIONALANALYSIS

Introduction to conformational isomerism and the concept of dynamic stereochemistry. Study of conformations in ethane and 1,2-disubstituted ethane derivatives like butane, dihalobutanes, halohydrin, ethylene glycol, butane-2,3-iol, amino alcohols and 1,1,2,2-tetrahaobutanes. Klyne-Prelog terminology for conformers and torsion angles. Conformations of unsaturated acyclic compounds (1-butene, propionaldehyde and butanone). Conformational diastereoisomers and conformational enantiomers. Factors affecting the conformational stability and conformational equilibrium-attractive and repulsive interactions. Use of physical and spectral methods in conformational analysis. Conformation effects on the stability and reactivity of acyclic diastereoisomers-steric and stereo electronic factors-examples. Conformations of cyclohexanes, mono and di substituted cyclohexanes. Stereochemistry of decalins. Factors governing the reactivity of axial and equatorial substituents in cyclohexanes. Stereochemistry of addition to the carbonyl group of rigid cyclohexane ring.

UNIT -5: HETE ROCYCLIC COMPOUNDS

Importance of heterocyclic compounds as drugs. Nomenclature of heterocyclic systems based on ring size, number and nature of hetero atoms. Synthesis and reactivity of Pyridine, Quinoline, Isoquinoline, Indole, Benzofuran, Benzothiophene, Pyrazole, Thiazole, Oxazole and Pyrimidine.

ORGANIC PHOTOCHEMISTRY, PERICYCLIC REACTIONS & ORGANIC SYNTHESIS

I - M.Sc(Chemistry) / II - Semester Choice Based Credit System(CBCS)

- By Prof. N.V.S. Naidu Prof. N.Y. Sreedhar Dr. K. Seshaiah Department of Chemistry Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Year : 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

CONTENTS

Page No.

Unit-I

1.0	Aims and Objectives	3
1.1	Introduction-Organic Photochemistry	3
1.2	Molecular Orbitals, Carbonyl Chromophore	7
1.3	Triplet States	12
1.4	Jablonski Diagram	14
1.5	Inter-System Crossing	15
1.6	Energy Transfer	21
1.7	Energies Properties and Reaction of Singlet and Triplet States of and Transitions	24
1.8	Photochemical Reactions	25
1.9	Photoreduction, Paterno-Buchi Reaction	29
1.10	Norrisch Type I Cleavage and Norrisch	
	Type II Cleavage	34
1.11	Photo Fries Rearrangement	37
1.12	Photochemistry of Unsaturated Systems	39
1.13	Olefins, Cis-trans Isomerisation and Dimerasation	42
1.14	Photochemistry of 1,3-butadienes	45
1.15	Let us Sum Up	45
1.16	Keywords	46
1.17	Answers to Check Your Progress	48
1.18	Questions for Discussion	49
	Unit-II	
2.0	Aims and Objectives	53
2.1	Introduction	54
2.2	Characteristics	55
2.3	Types of PeriCyclic reactions-Electro cyclic, Cycloaddition- Cycloreversion and Sigma Tropic Reactions-Examples	56
2.4	4 n and 4n+2 Electron Type-Stereo Specificity	60
2.5	Theories Involved in Understanding PeriCyclic Reactions	68
2.6	Frontier Molecular Orbital Theory Concept	69
2.7	Woodward-Hoffmann Selection Rules for Electro Cyclic	72

2.8	Cycloaddition-Cycloreversion	76
2.9	Sigma Tropic Reactions Based on FMO Approach	79
2.10	Conservation of Molecular Orbital Theory Concept	83
2.11	Framing of Woodward-Hoffmann Selection Rules for ElectroCyclic Cycloaddition and Cycloreversions Based on Conservation of Mole	
	Orbital Approach	84
2.12	Aromatic Transition State Theory-Concept	87
2.13	Woodward-Hoffmann Selection Rules for ElectroCyclic Reactions	89
2.14	Cycloaddition, Cycloreversions	90
2.15	Sigmatropic Reactions Based on ATS Aromatic Transition State (H	uckel-
	Mobius) Approach	91
2.16	Let us Sum Up	96
2.17	Keywords	97
2.18	Answers to Check Your Progress	98
2.19	Questions for Discussion	100
	Unit-III	

3.0	Aim and Objectives	103
3.1	Introduction to Organic Synthesis	104
3.2	Disconnection Approach-Examples	107
3.3	Terminology	108
	3.3.1 Definition of Target Molecule	109
3.4	Functional Group Interconversion (FGI), Disconnection Product,	
	Disconnection	109
3.5	Synthons, Reagents	112
3.6	Retrosynthesis	113
3.7	Linear and Convergent Synthesis	114
3.8	Importance of Order of Events in Organic Synthesis-Examples	115
3.9	Synthesis of Benzocaine, Paracetamol, (+) – Disparlure	116
3.10	Principles of Protection of Alcohols, Carboxylic Acids, Amines and Ca	rbonyl
	Groups	117
3.11	Let us Sum Up	120
3.12	Keywords	120
3.13	Answers to Check Your Progress	121
3.14	Questions for Discussion	122

Unit-IV

4.0	Aim and Objectives	125
4.1	Introduction	126
4.2	Oxidations	127
4.3	Alcohols to Crbonyls	131
	4.3.1 Cr (VI) Oxidants	131
	4.3.2 Swern Oxidation	133
	4.3.3 Silver Carbonate	134
	4.3.4 Prevost and Woodward Oxidation	136
	4.3.5 Oxidations of Allylic and Benzylic C-H Bonds:	
	DDQ and SeO ₂	138
4.4	Reductions	140
	4.4.1 Catalytic Hydrogenation	141
	4.4.2 Homogeneous Hydrogenation–Use of Wilkinson's Catalys	st 144
	4.4.3 Dissolving Metal Reductions Including Birch Reduction	147
	4.4.4 Nucleophilic Metal Hydrides: LiAlH ₄ , NaBH ₄ .	148
	4.4.5 Electrophilic Metal Hydrides: BH ₃ , AlH ₃ , Hydrogenolysis	-Use of tri-n-
	butyltin Hydride.	153
4.5	Organometallic Reagents: Preparationa and Application of the fo	-
	Organic Synthesis	154
	4.5.1 Grignard Reagnts	156
	4.5.2 Organo Lithium	167
	4.5.3 Organo Copper Reagents	171
4.6	Let us Sum Up	173
4.7	Keywords	175
4.8	Answers to Check Your Progress	176
4.9	Questions for Discussion	177
	Unit-V	
5.0	Aims and Objectives	183
51	Introduction and Terminology: Topocity in Molecules Homotopic	

5.1 Introduction and Terminology: Topocity in Molecules Homotopic, Stereoheterotopic (Enantiotopic and Diastereotopic) Groups and Faces

184

	5.1.1 Symmetry, Substitution and Addition Criteria	187
5.2	Prochirality Nomenclature: Pro-R Pro-S, Re and Si.	194
5.3	Methodology or Asymmetric Synthesis	195
	5.3.1 Substrate Controlled Asymmetric Synthesis: Nucleophilic	
	Addition to Chiral Carbonyl Compounds 1, 2-Asymmetric	с
	Induction, Cram's Rule and Felkin–Anh Model	196
	5.3.2 Chiral Auxiliary Controlled Asymmetric Synthesis: Use of	f
	Chiral Auxiliaries in Diels–Alder	198
	5.3.3 Chiral Reagent Controlled Asymmetric Synthesis:	
	Asymmetric Reduction using BINAL-H Asymmetric	
	Hydroboration using IPC_2BH and $IPCBH_2$	200
	5.3.4 Chiral Catalyst Controlled Asymmetric Synthesis: Sharple	ess
	and Jacobsen Epoxidations	204
5.4	Asymmetric Aldol Reaction, Diastereoselective Aldol Reaction	and its
	Explatnation by Zimmerman–Traxel Model	208
5.5	Let us sum up	213
5.6	Keywords	213
5.7	Answers to Check Your Progress	214
5.8	Questions for discussion	216

I - M.Sc(Organic) PAPER – VII: ORGANIC PHOTOCHEMISTRY, PERICYCLIC REACTIONS & ORGANIC SYNTHESIS

UNIT - I: Organic Photochemistry

Organic Photochemistry: Molecular orbitals, carbonyl chromophore–triplet states, Jablonski diagram, inter–system crossing. Energy transfer. Energies properties and reaction of singlet and triplet states of and transitions.

Photochemical Reactions: Photoreduction, Paterno-Buchi reaction, Norrisch type I cleavage and Norrisch type II cleavage, Photo Fries rearrangement. Photochemistry of unsaturated systems – Olefins, cis-trans isomerisation and dimerasation. Photochemistry of 1,3-butadienes.

UNIT - II: Pericyclic Reactions

Characteristics-Types of pericyclic reactions-Electrocyclic, cycloaddition-cycloreversion and sigmatropic reactions-examples. 4n and 4n+2 electron type-stereospecificity. Therories involved in understanding pericyclic reactions-

- (a) Frontier Molecular Orbital theory concept-Woodward-Hoffmann selection rules for electrocyclic, cycloaddition-cycloreversion and sigmatropic reactions based on FMO approach.
- (b) Conservation of Molecular Orbital theory concept-Framing of Woodward-Hoffmann selection rules for electrocyclic, cycloaddition and cycloreversions based on conservation of Molecular Orbital approach.
- (c) Aromatic Transition state theory-concept-Woodward-Hoffmann selection rules for electrocyclic reactions, cycloaddition-cycloreversions and sigmatropic reactions based on ATS aromatic transition state (Huckel-Mobius) approach.

UNIT-III: Synthetic Strategies and Protecting Groups

Introduction to organic synthesis. Disconnection approach – examples – Terminology – Definition of target molecule, functional group intercoversion (FGI), disconnection product, disconnection, synthons, reagents and retrosynthesis. Linear and convergent synthesis. Importance of order of events in organic synthesis – examples. Synthesis of Benzocaine, paracetamol, (+) – disparlure. Principles of Protection of alcohols, carboxylic acids, amines and carbonyl groups

UNIT IV: Reagents of Synthetic Importance (Oxidations and Reductions)

(a) Oxidations: (i) Alcohols to carbonyls : Cr(VI) oxidants, Swern oxidation, Silver Carbonate. (ii) Prevost and Woodward oxidation. (iii) Oxidations of allylic and benzylic C-H bonds: DDQ and SeO₂.

- (b) Reductions: (i) Catalytic hydrogenation. (ii) Homogeneous hydrogenation–Use of Wilkinsons catalyst. (iii) Dissolving metal reductions including Birch reduction. (iv) Nucleophilic metal hydrides : LiAlH₄, NaBH₄. Electrophilic metal hydrides: BH₃, AlH₃. (v) Hydrogenolysis-use of tri-n-butyltin hydride.
- (c) **Organometallic Reagents:** Preparationa and application of the following in organic synthesis: (a) Grignard reagnts, Organo Lithium and Organo copper reagents.

UNIT -V: Asymmetric Synthesis

Introduction and terminology : Topocity in molecules Homotopic, stereoheterotopic (enantiotopic and diastereotopic) groups and faces – symmetry, substitution and addition criteria. Prochirality nomenclature : Pro–R Pro–S, Re and Si. Methodology or asymmetric synthesis-1.

- 1. Substrate controlled asymmetric synthesis : Nucleophilic addition to chiral carbonyl compounds. 1,2–asymmetric induction, Cram's rule and Felkin–Anh model.
- 2. Chiral auxiliary controlled asymmetric synthesis : Use of chiral auxiliaries in Diels– Alder.
- 3. Chiral reagent controlled asymmetric synthesis : Asymmetric reduction using BINAL–H. Asymmetric hydroboration using IPC₂ BHand IPCBH₂.
- 4. Chiral catalyst controlled asymmetric synthesis : Sharpless and Jacobsen epoxidations.
- 5. Asymmetric aldol reaction, Diastereoselective aldol reaction and its explanation by Zimmerman–Traxel model.

ADVANCED NATURAL PRODUCTS

I - M.Sc(Chemistry) / II - Semester Choice Based Credit System(CBCS)

- By Prof. Venkat Rao Prof. N.Y. Sreedhar Dr. K. Seshaiah Department of Chemistry Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 **Year :** 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

> Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

Page No.

	Unit-I	rage no
1.0	Aims and Objectives	1
1.1	Introduction	1
1.2	Carbohydrates	3
	1.2.1 Occurrence	4
	1.2.2 Importance and Synthesis of Monosaccharides con Functional Groups such as Amino, Halo and Sulph	e e
	1.2.3 Structure Elucidation and Synthesis of Sucrose	6
	1.2.4 Conformational Structures of D (+) Ribose, 2-deo Sucrose, Lactose, Maltose and Cellobiose	oxy D-ribose, 8
	1.2.5 Structural Features of Starch, Cellulose and Chitin Elucidation not expected)	n (Structure 13
1.3	Proteins	14
	1.3.1 Acid and Enzymatic Hydrolysis of Proteins	25
	1.3.2 Determination of Amino Acid Sequence in Polype Group Analysis	eptides by end 26
	1.3.3 Chemical Synthesis of di and tri Peptides	27
1.4	Let us Sum Up	29
1.5	5	30
1.6	Answers to Check Your Progress	31
1.7	Questions for Discussion	32
2.0		33
2.0	Aims and Objectives Introduction	33 33
2.1		
2.2 2.3	Classification of Isoprene Rule and Special Isoprene Rul Occurrence	40
2.3	Isolation	44
2.4	Structure Elucidation	45
2.6	Stereochemistry and Total Synthesis of (i) Santonin (ii) A	
2.0	(iii) β -Carotene	51
2.7	Biosynthesis of Mono and Diterpinoids	57
2.8	Let us Sum Up	69
2.9	Keywords	69
2.10	O Answers to Check Your Progress	70
2.11	Questions for Discussion	72

Unit-III

3.0	Aim and Objectives	73
3.1	Introduction	73
3.2	Definition	74
	3.2.1 Medicinal Importance	75
3.3	Occurence of Alkaloids	75
	3.3.1 Classification of Alkaloids	76
3.4	General Methods used for Structural Determination of Alkaloids,	
	Isolation and Structural Elucidation	78
3.5	Stereochemistry and Total Synthesis of (i) Quinine (ii) Morphine	
	(iii) Reserpine	97
3.6	Biosynthesis of Morphine	107
3.7	Let us Sum Up	113
3.8	Keywords	113
3.9	Answers to Check Your Progress	114
3.10	Questions for Discussion	115
	Unit-IV	
4.0	Aims and Objectives	119
4.1	Introduction	120
4.2	Steriods	121
	4.2.1 Occurrence	121
	4.2.2 Isolation	125
	4.2.3 Structure Determination	126
	4.2.4 Stereo Chemistry and Total Synthesis of	130
	4.2.4.1 Cholesterol	130
	4.2.4.2 Androsterone	133
	4.2.4.3 Testosterone	134
	4.2.4.4 Estrone	135
	4.2.4.5 Progesterone	137
	4.2.5 Biosynthesis of Cholesterol	139
4.3	Prostaglandins	147
	4.3.1 Occurrence	147
	4.3.2 Classification	149
	4.3.3 Physiological Activity of Prostaglandins	152
4.4	Structure Determination and Synthesis of PGE_1 and PGE_2	159
4.5	Let us Sum Up	168
4.6	Key Words	169

4.7	Answers to Check Your Progress	169
4.8	Questions for Discussion	171
	Unit-V	
5.0	Aims and Objectives	173
5.1	Introduction	174
5.2	Primary, Secondary and Tertiary Structure of DNA	180
5.3	Types of RNA	192
	5.3.1 mRNA, tRNA and rRNA.	192
5.4	Replication, Transcription and Translation	195
5.5	Genetic Code	203
5.6	Protein Biosynthesis	205
5.7	Enzymes	210
	5.7.1 Definition, Classification Based on Mode of Action	211
5.8	Mechanism of Enzyme Catalysis	214
	5.8.1 Lock and Key Model	215
	5.8.2 Induced–Fit model	216
5.9	Factors Affecting Enzyme Catalysis	217
5.10	Enzyme Inhibition	220
	5.10.1 Reversible and Irreversible Inhibition	221
5.11	Enzymes in Organic Synthesis	222
	5.11.1 Immobilized Enzymes	222
5.12	Let us Sum Up	223
5.13	Keywords	224
5.14	Answer to check Your Progress	225
5.15	Questions for Discussion	226

I - M.Sc(Chemistry)

PAPER-VIII ADVANCED NATURAL PRODUCTS

UNIT- I: CARBOHYDRATES AND PROTEINS

Carbohydrates: Occurrence, importance and synthesis of monosaccharides containing functional groups such as amino, halo and sulphur. Structure elucidation and synthesis of sucrose. Conformational structures of D(+)ribose, 2-deoxy D-ribose, sucrose, lactose, maltose and cellobiose. Structural features of starch, cellulose and chitin (structure elucidation not expected).

Proteins: Acid and enzymatic hydrolysis of proteins. Determination of amino acid sequence in polypeptides by end group analysis. Chemical synthesis of di and tri peptides.

UNIT-II: TERPENOIDS

Classification – isoprene and special isoprene rules. Occurrence, isolation, structure elucidation, stereochemistry and total synthesis of (i) santonin (ii) abeitic acid and (iii)

 β -carotene. Biosynthesis of mono and diterpenoids.

UNIT- III: ALKOLOIDS

Definition, medicinal importance occurrence and classification of alkaloids. General methods used for structural determination of alkaloids. Isolation, structural elucidation, stereochemistry and total synthesis of (i) Quinine (ii) Morphine (iii) Reserpine. Biosynthesis of morphine.

UNIT-IV: STERIODS, HARMONES AND PROSTAGLANDINS

Occurrence, isolation, structure determination, stereo chemistry and total synthesis of (i) cholesterol (ii) androsterone (iii) testosterone (iv) estrone and (v) progesterone. Biosynthesis of cholesterol.

Occurrence, classification and physiological activity of prostaglandins. Structure determination and synthesis of PGE_1 and PGE_2 .

UNIT-V: NUCLEIC ACIDS AND ENZYMES

Nucleic Acids: Primary, secondary and tertiary structure of DNA, Types of RNA - mRNA, tRNA and rRNA. Replication, transcription and translation. Genetic code. Protein biosynthesis.

Enzymes: Definition, Classification based on mode of action. Mechanism of enzyme catalysis. Lock and Key model and Induced–Fit model. Factors affecting enzyme catalysis. Enzyme inhibition–reversible and irreversible inhibition. Enzymes in organic synthesis. Immobilized enzymes.

Recommended Books

- 1. Comprehensive Organic Chemistry by D.R. Barton and W.D. Ollis.
- 2. Standard methods in plant analysis by Reach and Tracey
- 3. Natural production by Kalsi.
- 4. Text book of Organic Chemistry Vol II by I. L. Finar.
- 5. An introduction to the chemistry of terpenoids and Steroids by William templetion.
- 6. Systematic identification of flavonoid compounds by Mabry & Markhan.