CLASSICALAND STATISTICAL MECHANICS

I - *M*.*Sc*(*Physics*) / *I* - *Semester Choice Based Credit System*(*CBCS*)

- By Prof. Y.C. Rathnakaran Prof. S. Vijayabhaskar Rao Department of Physics Sri Venkateswara University

Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502

i

Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers)

326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 **Reg. Off.:** 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

UNIT - I

		Page No.
1.0	Aims and Objectives	1
1.1	Introduction	1
1.2	Mechanics of a particle and system of particles	2
1.3	Conservation laws	2
1.4	Constraints and their classifications	4
1.5	Generalized coordinates	9
	1.5.1 Principle of virtual work	11
1.6	D'Alembert's principle	18
1.7	Lagrange's equations	20
	1.7.1 Lagrange's equations from D'Alembert's principle	26
1.8	Simple applications of Lagrange's equation	29
1.9	Linear Harmonic Oscillatory	36
1.10	Simple pendulum	41
1.11	Summary	45
1.12	Answer to check your progress	46
1.13	Exercise	47
	1.13.1 Long answer type questions	47
	1.13.2 Short answer type questions	47
	1.13.3 Problems	48

UNIT - II

2.0	Aims and Objectives	49
2.1	Hamilton's principle	49
2.2	Lagrange's equation from Hamilton's Principle	55
2.3	Extension of Hamilton's principles	58
2.4	Deduction of Lagrange's equation from Extended Hamilton's	
	Principle	62
2.5	Summary	71
2.6	Answer to check your progress	72
2.7	Exercise	72
	2.7.1 Long answer type questions	72
	2.7.2 Short answer type questions	72
	2.7.3 Problems	73
	UNIT - III	
3.0	Aims and Objectives	75

3.1 Introduction 76

3.2	Legendre transformations	76
3.3	Generalized momentum and cyclic coordinates	80
3.4	Conservation Theorems	82
3.5	Hamiltonian function	84
3.6	Hamiltonian equations of motion	87
3.7	Physical significance	91
3.8	Applications of Hamiltonian Formulation	93
	3.8.1 Linear Harmonic Oscillator	96
	3.8.2 Simpe Pendulum	97
3.9	Summary	110
3.10	Answer to check your progress	111
3.11	Exercise	111
	3.11.1 Long answer type questions	111
	3.11.2 Short answer type questions	111
	3.11.3 Problems	112

	TT 7	1
UNII	- I V	

4.0 Aims and Objectives 113 4.1 Introduction 113 4.2 Equation of canonical transformations 116 4.2.1 Generating functions 119 4.3 Examples of canonical transformations 128 4.3.1 The harmonic oscillator 132 4.4 Poisson and Lagrange brackets 138 4.5 Equation of motion interms of Poission brackets 142 4.6 Relationship between angular momentum and poission brackets 147 4.7 Summary 148 4.8 Answer to check your progress 149 4.9 Exercise 151 151 4.9.1 Long answer type questions 4.9.2 Short answer type questions 151 4.9.3 Problems 151

UNIT - V

5.0	Aims and Objectives	153
5.1	Introduction	153
5.2	Hamilton-Jacobi equation	153
5.3	Hamilton's characteristic function	156
5.4	One dimensional harmonic oscillator	157

Summary	163
Answer to check your progress	163
Exercise	164
5.7.1 Long answer type questions	164
5.7.2 Short answer type questions	164
	Summary Answer to check your progress Exercise 5.7.1 Long answer type questions 5.7.2 Short answer type questions

6.0	Aims and Objectives	165
6.1	Basic postulates of statistical mechanics	165
6.2	Phase space	169
	6.2.1 Probability, Density distribution in phase space	169
6.3	Liouville's theorem	170
6.4	Concept of Ensemble	175
	6.4.1 Classification of Ensemble	176
	6.4.1.1 Micro canonical	176
	6.4.1.2 Canonical	181
	6.4.1.3 Grand canonical ensembles	184
6.5	Summary	186
6.6	Answer to check your progress	187
6.7	Review questions	188
	6.7.1 Long answer type questions	188
	6.7.2 Short answer type questions	188

7.0	Aims and Objectives	189
7.1	Introduction	189
7.2	Partition functions	190
	7.2.1 Canonical ensemble	190
	7.2.2 Grand canonical ensemble	191
	7.2.3 Micro canonical ensemble	192
7.3	Boltzman equipartition theorem	192
7.4	Partition function for Translational	196
7.5	Partition function for Rotational	197
7.6	Partition function for Vibrational	209
7.7	Partition function for Electronic	211
7.8	Maxwell - Boltzman statistics	216
7.9	Maxwell-Boltzman distribution of velocities	218
7.10	Summary	223
7.11	Answer to check your progress	224
7.12	Exercise	225

7.12.1 Long answer type questions	225
7.12.2 Short answer type questions	225

UNIT - VIII

8.0	Aims and Objectives	227
8.1	Introduction	227
8.2	Bose-Einstein	228
	8.2.1 Bose-Einstein statistics	228
	8.2.2 Bose-Einstein distribution	229
	8.2.3 Bose-Einstein condensation	231
	8.2.4 Thermodynamic properties of an ideal Bose-Einstein gas	234
8.3	Black body radiation	238
8.4	Femi-Dirac statistics	239
	8.4.1 Properties of the Femi-dirac statistics	240
	8.4.2 Applications of Fermi-dirac statistics	242
8.5	Fermi-Dirac distribution	244
8.6	Summary	245
8.7	Answer to check your progress	246
8.8	Exercise	247
	8.8.1 Long answer type questions	247
	8.8.2 Short answer type questions	247

UNIT -1: LAGRANGIAN MECHANICS

Mechanics of a particle and system of particles, Conservation laws, Constraints and their classifications, Generalized coordinates, Principle of virtual work, D'Alembert's principle. Lagrange's equations: Lagrange's equations from D'Alembert's principle, Simple applications of Lagrange's equation: Linear Harmonic Oscillatory, Simple pendulum.

UNIT - II: HAMILTON'S PRINCIPLE

Hamilton's principle, Lagrange's equation from Hamilton's Principle, Extension of Hamilton's principles, Deduction of Lagrange's equation from Extended Hamilton's Principle.

UNIT - III: HAMILTONIAN MECHANICS

Legendre transformations, Generalized momentum and cyclic coordinates, Conservation theorems, Hamiltonian function, Hamiltonian equations of motion, Physical significance of Hamiltonian, Application of Hamiltonian Formulation: Linear Harmonic Oscillator, Simple pendulum.

UNIT - IV : CANONICAL TRANSFORMATIONS

Equation of Canonical Transformations, Generating functions, Examples of canonical transformations: the harmonic oscillator, 'Poisson and Lagrange brackets, Equations of motion in terms of Poisson brackets, Relationship between Angular momentum and Poisson brackets.

UNIT -V : HAMILTON-JACOBI THEORY

Hamilton-Jacobi equation, one dimensional harmonic oscillator, Physical significance of the Hamilton's characteristic function.

UNIT - VI: ENSEMBLES

Basic postulates of Statistical Mechanics, Phase space, probability, Density distribution in phase space, Liouville's theorem, Concept of Ensemble, Classification of Ensemble: Micro canonical, Canonical and Grand Canonical ensembles.

UNIT - VII: PARTITION FUNCTION

Partition functions for Micro canonical, Canonical and Grand canonical ensembles, Boltzman equipartition theorem, Partition functions for Translational, Rotational, Vibrational and Electronic energies. Maxwell - Boltzman statistics, Maxwell-Boltzman distribution of velocities.

UNIT - VIII: QUANTUM STATISTICS

Bose-Einstein statistics and its distribution: Bose-Einstein condensation, Thermodynamic properties of an ideal Bose-Einstein gas, Black body radiation, Femi-Dirac statistics: Fermi-Dirac distribution.

NOTES

ATOMIC PHYSICS, OPTICS AND ELCTROMAGNETIC THEORY

I - *M*.*Sc*(*Physics*) / *I* - *Semester Choice Based Credit System*(*CBCS*)

- By Prof. K. Vijaya Lakshmi Prof. K.S. Reddy Prof. Y.C. Rathnakaran Department of Physics Sri Venkateswara University

Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

UNIT - I

		Page No.
1.0	Aims and Objectives	1
1.1	Introduction	1
1.2	Interaction energy and spectral series of helium -	
	Pauli's principle	2
	1.2.1 LS coupling and Hunds rules	8
1.3	Lande's interval rule	12
	1.3.1 Quantum theory of Zeeman and Paschen Back effects	23
1.4	Distinguish between normal Zeeman effect and Paschen	
	Back effects	31
1.5	Summary	36
1.6	Answer to check your progress	36
1.7	Exercise	37
	1.7.1 Long answer type questions	37
	1.7.2 Short answer type questions	37
	UNIT - II	
2.0	Aims and Objectives	39
2.1	Introduction	39
2.2	Principle of atomic absorption spectroscopy (AAS)	40
2.3	Instrumentation	41
	2.3.1 Atomic absorption spectrometers	47
2.4	Difference betweeen atomic absorption and flame emission	
	spectroscopy	53
	2.4.1 Determination of lead in petrol	59
2.5	Summary	60
2.6	Answer to check your progress	61
2.7	Exercise	62
	2.7.1 Long answer type questions	62
	2.7.2 Short answer type questions	62
	UNIT - III	

3.1	Introduction	63
3.2	Line spectra of atoms and ions	66
3.3	Excitation and ionization potentials	71

63

Aims and Objectives

3.0

	3.3.1 Sample preparation: Rocks and biological samples	71
3.4	Spectrographs	74
	3.4.1 Prism and grating spectrographs	75
3.5	Qualitative analysis	79
	3.5.1 Rais-Ultimes lines	80
3.6	Quantitative analysis, Internal standard method	82
3.7	Summary	85
3.8	Answer to check your progress	85
3.9	Exercise	86
	3.9.1 Long answer type questions	86
	3.9.2 Short answer type questions	86
	UNIT - IV	

4.0	Aims and Objectives	87
4.1	Introduction	87
4.2	Einstein coefficients	89
4.3	Amplification in medium and population inversion	91
4.4	Spatial and temporal coherence	98
4.5	The ruby laser	100
4.6	Helium-Neon laser	102
4.7	Four level solid state laser	103
4.8	CO ₂ laser, Dye laser	105
4.9	Semiconductor laser	106
4.10	Summary	119
4.11	Answer to check your progress	119
4.12	Exercise	120
	4.12.1 Long answer type questions	120
	4.12.2 Short answer type questions	121
	4.12.3 Problems	121
	UNIT - V	

5.0	Aims and Objectives	123
5.1	Introduction to Holography	123
	5.1.1 Basic theory of Holography	130
5.2	Recording and reconstruction of Hologram	131
5.3	Fourier transform Holography	134
	5.3.1 Acoustic and Holographic Microscopy	136

5.4	Pattern recognition and applications of holography	145
5.5	Summary	154
5.6	Answer to check your progress	154
5.7	Exercise	156
	5.7.1 Long answer type questions	156
	5.7.2 Short answer type questions	156

6.0	Aims and Objectives	157
6.1	Introduction	157
6.2	Fringe contrast variation	158
6.3	Fourier Transformation spectroscopy	161
	6.3.1 Michelson interferometer	163
	6.3.2 Advantages of Fourier transforms	169
6.6	Optical data processing	171
6.7	Diffraction	173
6.8	Summary	191
6.9	Answer to check your progress	191
6.10	Exercise	192
	6.10.1 Long answer type questions	192
	6.10.2 Short answer type questions	193
	6.10.3 Problems	193

7.0	Aims and Objectives	195
7.1	Introduction	195
7.2	Optical Fibers	196
	7.2.1 Basic optical laws	197
7.3	Optical fiber modes	202
	7.3.1 Fiber types	205
	7.3.2 Rays and modes	207
7.4	Distinction between step index and graded index fibre structures	208
7.5	Ray optics and wave representation	213
7.6	Attenuation in fibers	215
	7.6.1 Absorption and scattering losses, radiation losses	217
7.7	Material dispersion	223
7.8	Fibre materials	227
	7.8.1 Applications of fibre optics	229
7.9	Summary	238

7.10	Answer to check your progress	238
7.11	Exercise	239
	7.11.1 Long answer type questions	239
	7.11.2 Short answer type questions	239
	7.11.3 Problems	240

8.0	Aims and Objectives	241
8.1	Introduction	241
8.2	Maxwell's equations	245
	8.2.1 Poynting theorem	247
	8.2.2 Vector and scalar potentials	249
8.3	Maxwell's equations in homogenous medium	251
8.4	Propagation of electromagnetic waves in conducting medium	253
8.5	Propagation in isotropic dielectric medium	260
8.6	Electromagnetic radiation	265
	8.6.1 Retarded potentials	266
	8.6.2 Radiation from moving point charge and oscillating dipoles	272
8.7	Summary	280
8.8	Answer to check your progress	281
8.9	Exercise	281
	8.9.1 Long answer type questions	281
	8.9.2 Short answer type questions	282
	8.9.3 Problems	282

UNIT-1: MANY ELECTRON ATOMS AND EXTERNAL FIELDS

Interaction energy and Spectral series of helium-Pauli's principle-LS coupling and Hand's rules, Lande's interval rule- Quantum theory of Zeeman and Paschen-Back effects-Distinguish between Normal Zeeman effect and Paschen-Back effects.

UNIT- II: ATOMIC ABSORPTION SPECTROSCOPY

Principle of Atomic Absorption Spectroscopy (AAS). Instrumentation-Atomic absorption spectrometers- Differences between atomic absorption and flame emission spectroscopy. Determination of lead in petrol.

UNIT- III: EMISSION SPECTROSCOPY

Line spectra of atoms and ions- Excitation and ionization potentials- Sample preparation: rocks and biological samples. Spectrographs : prism and grating spectrographs. Qualitative analysis: Raies-Ultimes lines. Quantitative analysis: Internal standard method.

UNIT-IV: LASERS

Einstein coefficients. Amplification in a medium and population inversion. Spatial and temporal coherence. The ruby laser, Helium-Neon laser, four level solid state laser.

 CO_2 laser, Dye laser, semiconductor laser.

UNIT-V: HOLOGRAPHY

Introduction to Holography: Basic theory of Holography, Recording and reconstruction of Hologram, Fourier transform Holography, Acoustic and Holographic Microscopy, Pattern recognition and Applications of Holography.

UNIT-VI: FOURIER OPTICS

Fringe contrast variation. Fourier Transformation spectroscopy. Michelson interferometer. Advantages of Fourier transforms. Optical data processing. Diffraction.1

UNIT-VII: FIBRE OPTICS

Optical fibres. Basic optical laws. Optical fibre modes, fibre types, rays and modes. Distinction between step index fibre and graded index fibre structures. Ray optics and wave representation. Attenuation in fibres. Absorption & scattering losses, radiation losses. Material dispersion. Fibre materials. Applications of fibre optics.

UNIT-VIII: ELECTROMAGNETIC THEORY

Maxwell's equations, Poynting theorem, Vector and scalar potentials. Maxwell's equations in homogenous medium. Propagation of electromagnetic waves in conducting medium. Propagation in isotropic dielectric medium. Electromagnetic radiation -Retarded potentials, Radiation from moving point charge and oscillating dipoles.

BOOKS FOR STUDY

- 1. Classical Electrodynamics, J.D. Jackson, wiley, New York, 2001.
- 2. Fibre Optic Communication, Keiser, Mc. Graw Hill, New York, 2003.
- 3. Introduction to Classical and Modern Optics, J.R. Meyer, Prentice Hall, Englewood, Cliffs, New Jersy, 1972.

NOTES

CONDENSED MATTER PHYSICS, ELECTRONIC DEVICES AND CIRCUITS

I - M.Sc(Physics) / I - Semester Choice Based Credit System(CBCS)

- By Prof. Y.C. Rathnakaran Prof. O.M.D. Hussain Prof. S. Vijayabhaskar Rao Department of Physics Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers)

326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 **Reg. Off.:** 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

UNIT - I

Page No.

	Structure of Crystals	
1.0	Aims and Objectives	1
1.1	Introduction	2
1.2	Crystal systems	3
	1.2.1 Bravias lattice	14
	1.2.2 Miller Indices	15
	1.2.3 Relation between inter-plane spacing and lattice spacing	18
	1.2.4 Reciprocal lattice and structural factor	19
1.3	X-ray diffraction	25
	1.3.1 Laue diffraction	26
	1.3.2 Bragg's law	27
1.4	Powder diffraction	29
	1.4.1 Experimental determination of structure of cubic crystals by	
	powder diffraction technique	31
1.5	Bonding in crystals-Ionic	36
	1.5.1 Covalent and metallic Binding energy of ionic crystals	37
1.6	Summary	44
1.7	Answer to check your progress	44
1.8	Exercise	45
1.8.1	Long answer type questions	45
1.8.2	Short answer type questions	45
1.8.3	Problems UNIT - II	46
	Transport Phenomena And Band Theory	

2.0	Aims and Objectives	47
2.1	Introduction	48
2.2	Classical free electron theory	48
	2.2.1 Expression for thermal and electrical conductivities for metals	49
2.3	Lorentz number	53
2.4	Differential scattering mechanisms, Mathieissen's rule	58
2.5	Formulation of Boltzmann transport equation	61
2.6	Relaxation time approximation	63
2.7	Sommerfeld model - its consequences	65
2.8	Electron lattice interaction	70
2.8.1	Motion of electron in periodic potential	74
2.9	Bloch function	75

	2.10 Kronig-Penny model	76
2.11	Formation of energy bands in solids	79
2.12	Concept of effective mass	81
2.13	Brillouion zones	84
2.14	Summary	89
2.15	Answer to check your progress	90
2.16	Exercise	91
	2.16.1 Long answer type questions	91
	2.16.2 Short answer type questions	91
	2.16.3 Problems	92

UNIT - III

	Imperfections in Crystals	
3.0	Aims and Objectives	93
3.1	Introduction	94
3.2	Classification of imperfections	95
3.3	Point defects	98
	3.3.1 Schottky and Frenkel defects	101
3.4	Expression for equilibrium	103
3.5	Defect concentrations, Diffusion	106
	3.5.1 Ionic conductivity in alkali halides	114
3.6	Kirkendall effect	119
3.7	Line defects, Dislocations	120
3.8	Edge and screw disloacations	122
	3.8.1 Estimation of dislocation densities	124
	3.8.2 Role of dislocations in crystal growth	130
3.9	Frank Reed mechanism of dislocation multiplication	132
3.10	Summary	135
3.11	Answer to check your progress	136
3.12	Exercise	137
	3.12.1 Long answer type questions	137
	3.12.2 Short answer type questions	137
	3.12.3 Problems	138
	UNIT - IV	

Superconductivity

4.0	Aims and Objectives	139
4.1	Introduction	139
4.2	Concept of zero resistance	141

	4.2.1 Magnetic behavior, Distinction between a perfect conductor and	
	superconductor	142
4.3	Meissner effect, isotope effect	146
	4.3.1 Specific heat behavior, two fluid model	148
4.4	Expression for entropy difference between normal and superconducting s	tates
		151
4.5	London's equations-Penetration depth	155
	4.5.1 BCS theory	158
4.6	Applications of superconductor	160
	4.6.1 High T_c superconductors	161
4.7	Summary	162
4.8	Answer to check your progress	164
4.9	Exercise	166
	4.9.1 Long answer type questions	166
	4.9.2 Short answer type questions	166
	4.9.3 Problems	166

UNIT - V

	Semiconductor Diodes	
5.0	Aims and Objectives	167
5.1	Introduction	167
5.2	p-n junction diode - Equivalent circuit	168
5.3	Diffusion capacitance	172
	5.3.1 Reverse recovery time	175
5.4	Diode applications	175
	5.4.1 Half-wave rectifier	178
	5.4.2 Full-wave rectifier	183
	5.4.3 Bridge rectifier	186
5.5	Special diodes	187
	5.5.1 Zener diode, Varicap diode	187
	5.5.2 Photodiode, Schottky diode	192
	5.5.3 Tunnel diode, LED and Laser diode	196
5.6	Summary	205
5.7	Answer to check your progress	205
5.8	Exercise	205
	5.8.1 Long answer type questions	205
	5.8.2 Short answer type questions	206
	5.8.3 Problems	206

UNIT - VI

Transistors And Microwave Devices Aims and Objectives 207 6.0 6.1 Introduction 208 208 6.2 Bipolar junction transistor (BJT) Field effect transistor (FET) 217 6.3 6.4 n-channel, p-channel 219 6.5 Depletion and enhancement MOSFETs 221 CMOS device 225 6.6 226 6.7 pnpn Devices 227 6.7.1 SCR,UJT 6.8 **Microwave Devices** 234 6.8.1 PIN, APD 234 6.8.2 Important applications 239 6.9 Summary 240 6.10 Answer to check your progress 240 6.11 Exercise 241 6.11.1 Long answer type questions 241 6.11.2 Short answer type questions 241 6.11.3 Problems 242

UNIT -	VII

Basics of Operational Amplifier

7.0	Aims and Objectives	243
7.1	Introduction	243
7.2	Block diagram of OpAmp 741	245
7.3	Characteristic of OpAmp	247
	7.3.1 DC offset voltage, offset current	248
	7.3.2 CMRR and slew rate	251
7.4	Experimental techniques to measure OpAmp characteristics	258
7.5	Open and closed loop configurations	260
7.6	OpAmp configurations	264
	7.6.1 Inverting and non-inverting amplifiers	266
7.7	Voltage and current followers	267
7.8	Differential amplifier	269
7.9	Summary	272
7.10	Answer to check your progress	273
7.11	Exercise	273

7.11.1 Long answer type questions	263
7.11.2 Short answer type questions	273
7.11.3 Problems	274

UNIT - VIII

	Applications of Operational Amplifiers	
8.0	Aims and Objectives	275
8.1	Introduction	275
8.2	Mathematical operations	276
	8.2.1 Addition, Subtraction and Multiplication	281
8.3	Log and Antilog amplifiers	284
8.4	Sample and hold circuit	296
8.5	Integrator	298
8.6	Differentiator and compartor circuit	301
8.7	Solving second order differential equations using OpAmp	305
8.8	Waveform generators	306
	8.8.1 Wein bridge	307
	8.8.2 Colpitts oscilltors	311
	8.8.3 Astable multivibrator	312
8.9 S	ummary	315
8.10	Answer to check your progress	315
8.11	Exercise	316
	8.11.1 Long answer type questions	316
	8.11.2 Short answer type questions	316
	8.11.3 Problems	316

PAPER III: CONDENSED MATTER PHYSICS, ELECTRONIC DEVICES AND CIRCUITS

UNIT-I: STRUCTURE OF CRYSTALS

Crystal systems, Bravias lattices, Miller indices, Relation between inter-planar spacing and lattice spacing, Reciprocal lattice and structural factorX-ray diffraction, Laue diffraction, Bragg's law. Powder diffraction-Experimental determination of structure of cubic crystals by powder diffraction technique-Bonding in crystals-Ionic, Covalent, and metallic Binding energy of ionic crystals

UNIT-II: TRANSPORT PHENOMENA AND BAND THEORY

Classical free electron theory, Expression for thermal nd electrical conductivities for metals, Lorentz number, Different scattering mechanisms- Mathieissen's rule, formulation of Boltzmann transport equation, Relaxation time approximation, Sommerfeld model-its consequences. Electron-lattice interaction(Quantitative only), Motion of electron in periodic potential, Bloch function, Kronig-Penny model, Formation of energy bands in solids, Concept of effective mass, Brillouion zones.

UNIT-III: IMPERFECTIONS IN CRYSTALS

Classification of imperfections- Point defects-Schottky and Frenkel defects-Expressions for equilibrium defect concentrations-Diffusion-Ionic conductivity in alkali halides-Kirkendall effect-Line defects-Dislocations-Edge and Screw dislocations-Estimation of dislocation densities-Role of dislocations in crystal growth-Frank-Reed mechanism of dislocation multiplication.

UNIT-IV: SUPERCONDUCTIVITY

Concept of zero resistance, Magnetic behavior, distinction between a perfect conductor and superconductor, Meissner effect-isotope effect-specific heat behavior, Two-fluid model. Expression for entropy difference between normal and superconducting states. London's equations-Penetration depth, BCS theory, Applications of superconductor High

 T_c superconductors (Basics only).

UNIT-V: SEMICONDUCTOR DIODES

p-n Junction diode-Equivalent Circuit, Diffusion capacitance, Reverse recovery time-Diode Applications: Half-wave rectifier, Full-wave rectifier, Bridge rectifier.

Special diodes: Zener diode, Varicap diode, Photodiode, Schottky diode, Tunnel diode, LED and Laser Diode

UNIT-VI: TRANSISTORS AND MICROWAVE DEVICES

Bipolar Junction Transistor (BJT), Field Effect Transistor, (n-channel, p-channel), Depletion and Enhancement MOSFETs, CMOS device, pnpn Devices: SCR, UJT. Microwave Devices: PIN, APD-Important applications.

UNIT-VII: BASICS OF OPERATIONAL AMPLIFIER

Block diagram of Op Amp 741, Characteristics of Op Amp: dc offset voltage, offset current, CMRR and slew rate. Experimental techniques to measure OpAmp characteristics, open and closed loop configurations. OpAmp configurations: Inverting and non-inverting amplifiers, Voltage and Current followers, Differential amplifier.

UNIT-VIII: APPLICATIONS OF OPERATIONAL AMPLIFIERS

Mathematical operations: Addition, Subtraction and Multiplication, Log and Antilog amplifiers, Sample and hold circuit, Integrator, Differentiator and Comparator circuit, Solving second-order differential equations using OpAmp. Waveform generators: Weinbridge, Colpitts Oscillators, Astable Multivibrator

BOOKS FOR STUDY

- 1. Solid State Physics, C.Kittel, Wiley Publishers, 8th Edition, 2004.
- 2. Solid state Physics, A.J.Dekker, Macmillan India Ltd., 2000.
- 3. Elementary Solid State Physics, M.Ali Omar, Pearson Education, 2002.
- 4. High T_c Superconductivity, C.N.R.Rao and S.V.Subramanyam, World Scientific Publishing Co. Pvt. Ltd, 1991.
- 5. X-ray Diffraction, B.E. Warren, Addison Wesley, 1962.
- 6. Electronic Devices and Circuit theory, Boylstead and Nashelsky, PHI, 2002.
- 7. Electronic Devices and Circuits: An Introduction, Alien Mottershead, PHI, 2011
- 8. Operational Amplifiers and Linear Integrated circuits, R.F.Coughlin and F.F.Driscoll, PHI, 2008.
- 9. An Introduction to Operational Amplifiers and their Applications, S.V. Subramanyam and Y.Narasimha Murthy, Mac Millan Publishers, 2010.

Notes

MATHEMATICAL PHYSCIS

I - *M*.*Sc*(*Physics*) / *I* - *Semester Choice Based Credit System*(*CBCS*)

- By Prof. Y.C. Rathnakaran Prof. O.M.D. Hussain Prof. S. Vijayabhaskar Rao Department of Physics Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

<u>CONTENTS</u>

UNIT - I

			Page No.
1.0	Aims an	d Objectives	1
1.1	Introduct	tion	1
1.2	Notation	as and Conventions	2
1.3	The rank	x of a tensor	4
1.4	Contra-v	variant and Co-variant tensors	6
1.5	Tensor a	lgebra	8
	1.5.1	Addition	8
	1.5.2	Subtraction	8
	1.5.3	Contraction	9
	1.5.4	Inner product and outer product	9
1.6	Symmet	ric and anti-symmetric tensors	11
1.7	Applicat	ions of tensor	17
	1.7.1	Stress	17
	1.7.2	Strain	19
	1.7.3	Piezo-electricity and elasticity tensors	25
1.8	Summar	У	27
1.9	Exercise		27
		UNIT - II	

2.0	Aims and Objectives	29
2.1	Introduction	29
2.2	Isomorphism and Homomorphism	30
2.3	The group of symmetry of an equilateral triangle	35
2.4	The group of symmetry of a square	40
2.5	Representation of groups	42
	2.5.1 Reducible and Irreducible representations	43
2.6	Character representation and construction of character tables	46
2.7	Summary	49
2.8	Exercise	49

UNIT - III

3.0	Aims and Objectives	51
3.1	Introduction	51
3.2	Method of separation of variables	53
3.3	Equation of vibrating string	56
3.4	Solution of wave equation by D'Alembert's method	58
3.5	One and two dimensional heat flow	60

3.6	Laplace equation in polar co-ordinates	
3.7	Transmission line equation	88
3.8	Summary	92
3.9	Exercise	92
	UNIT - IV	

4.0	Aims and Objectives	95
4.1	Introduction	95
4.2	Functions of complex variables	96
4.3	Complex differentiation	97
4.4	Analytic function and Cauchy-Riemann equations	99
4.5	Harmonic Functions	107
4.6	Derivatives of elementary function	119
4.7	Complex integration	127
4.8	Cauchy's theorem-Cauchy's integral formula	134
4.9	Summary	150
4.10	Exercise	151

UNIT - V

5.0	Aims and Objectives	155
5.1	Introduction	155
5.2	Gamma and Beta Functions	156
	5.2.1 Different forms of Beta and gamma functions	156
5.3	Properties of gamma and Beta	162
5.4	Relationship between beta and gamma functions	164
5.5	Solved examples	166
5.6	Summary	179
5.7	Exercise	180

UNIT - VI

6.0	Aims and Objectives	181
6.1	Introduction	181
6.2	Besel's differential equations	184
	6.2.1 Bassel's function of first and second kind	185
	6.2.2 Recurrence formula, Generating function and orthogorelations	onality 188
6.3	Legendre's equations and Legendre's polynomials	192
	6.3.1 Legendre's polynomials: Recurrence formula, Gener	ating
	function	199
6.4	Hermite polynomials	201

	6.4.1 Recurrence formula, Generating function and Rodrigue's	
	formula	201
6.5	Summary	206
6.6	Exercise	207
	UNIT - VII	
7.0	Aims and Objectives	211
7.1	Introduction	211
7.2	Fourier transforms and its inverse transform	213
7.3	Fourier sine and cosine transforms	213
7.4	Properties of fourier transformations	235
	7.4.1 Linearity and shifting properties	235
	7.4.2 Convolution theorem and deconvolution theorem	239
7.5	Solved problems	240
7.6	Summary	249
7.7	Exercise	250

UNIT - VIII

8.0	Aims and Objectives	253
8.1	Introduction	253
8.2	Definition and notation	254
8.3	Inverse Laplace transforms	269
8.4	Linearity, shifting and derivative properties	287
8.5	Convolution theorem	301
8.6	Evaluation of integrals	307
8.7	Application to integral and differential equations	311
8.8	Summary	319
8.9	Exercise	320

UNIT -1: TENSORS

Introduction: Notations and Conventions - The rank of a tensor - Contra-variant and Covariant tensors - Tensor Algebra: addition, subtraction, contraction, inner product and outer product - Symmetric and anti-symmetric tensors - Applications of tensor: Stress, Strain, Piezo-electricity and elasticity tensors.

UNIT-II: GROUP THEORY

Isomorphism and Homomorphism - The group of symmetry of an equilateral triangle -Group of symmetry of a square - Representation of groups: Reducible and Irreducible representations — Character representation — Construction of character tables (C_{2y}, C_{3y}) .

UNIT - III: PARTIAL DIFFERENTIAL EQUATIONS

Method of separation of variables - Equation of vibrating string - Solution of wave equation by D'Alembert's method - One dimensional heat flow - Two dimensional heat flow -Laplace equation in polar co-ordinates - Transmission line equation.

UNIT-IV : COMPLEX VARIABLES

Functions - Complex differentiation - Analytic function - Cauchy-Riemann equations - Derivatives of elementary function - Complex integration - Cauchy's theorem - Cauchy integral formula.

UNIT-V : SPECIAL FUNCTIONS

Definitions of beta and gamma functions and their properties - Different forms of beta and gamma functions - Relationship between beta and gamma functions.

UNIT-VI: DIFFERENTIAL EQUATIONS

Bessel's differential equations: Bessel's function of first and second kind (recurrence formula, generating function and orthogonality relations only) - Legendre's equations - Laguerre and Hermite polynomials (recurrence formulae, generating function and Rodrigue's formulae only).

UNIT-VII: FOURIER TRANSFORMS

Fourier Transforms: Fourier transforms and its inverse transform - Linearity and shifting properties - Fourier sine and cosine transforms - Convolution theorem and Deconvolution theorem.

QUANTUM MECHANICS

I - M.Sc(Physics) / II- Semester Choice Based Credit System(CBCS)

- By Prof. Venkatarami Reddy Prof. Y.C. Rathnakaran Prof. S. Vijayabhaskar Rao Department of Physics Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers)

326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 **Reg. Off.:** 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

UNIT - I

Page No.

1.0	Aims and Objectives	3
1.1	Introduction	3
1.2	Postulates of quantum mechanics	4
1.3	Operator formalism	8
1.4	Eigen values and Eigen vectors	13
1.5	Schrodinger wave equation	17
	1.5.1 Development of the schrodinger time independent	ıt
	and time dependent wave equations	19
1.6	Solution of the time dependent Schrodinger equation	21
1.7	Concept of stationary states	26
1.8	Summary	30
1.9	Answer to check your progress	31
1.10	Review questions	31
	1.10.1 Long answer type questions	31
	1.10.2 Short answer type questions	32
	UNIT - II	
2.0	Aims and Objectives	35
2.1	Introduction	36
2.2	Potential step	37
2.3	Reflection and Transmission at the interface	42
2.4	Potential well	44
	2.4.1 Square well potential with rigid walls	44
	2.4.2 Square well potential with finite walls	46
2.5	Potential barrier	49
	2.5.1 Penetration of a potential barrier (tunneling effect)	49
2.6	Radioactive emission of alpha particle	55
2.7	Periodic potential	56
2.8	Harmonic oscillator	62
2.9	Summary	67
2.10	Answer to check your progress	68
2.11	Exercise	68
	2.11.1 Long answer type questions	68

2.11.2 Short answer type questions

UNIT - III

3.0	Aims and Objectives	73
3.1	Introduction	73
3.2	Matrix representation of wave functions	74
3.3	Linear operations	76
3.4	The concept of row and column matrices	77
3.5	Matrix algebra	78
3.6	Hermitian operations	84
3.7	Dirac's bra and ket notation	88
3.8	Expectation values	91
3.9	Heisenberg (operator) representation of harmonic oscillator	94
3.10	Ladder operators and their significance	98
3.11	Summary	103
3.12	Answer to check your progress	103
3.13	Review questions	104
	3.13.1 Long answer Type Questions	104
	3.13.2 Short answer Type Questions	104

UNIT - IV

4.0	Aims and Objectives	107
4.1	Introduction	108
4.2	Angular momentum (AM) operators	108
	4.2.1 Definition	108
	4.2.2 Eigen functions and Eigen values	111
	4.2.3 Matrix representation	115
4.3	System with spin half (1/2)	117
4.4	Spin angular momentum	118
4.5	Pauli's spin matrices	120
4.6	Clebsch-Gordon coefficients	121
4.7	Rigid Rotator	129
4.8	Summary	131
4.9	Answer to check your progress	131
4.10	Exercise	132
	4.10.1 Long answer type questions	132
	4.10.2 Short answer type questions	132

69

	UNIT - V	
5.0	Aims and Objectives	135
5.1	Introduction	135
5.2	Identical Particles	136
5.3	Symmetric and anti-symmetric wave functions	138
5.4	Indistinguishability of identical particles	141
5.5	Pauli's exclusion principle	142
5.6	Hydrogen molecule ion	143
5.7	Hydrogen molecule	146
	5.7.1 Concept of Ortho and Para Hydrogen	148
5.8	Summary	149
5.9	Answer to check your progress	149
5.10	Exercise	150
	5.10.1 Long answer type questions	150
	5.10.2 Short answer type questions	150

UNIT - VI

6.0	Aims and Objectives	153
6.1	Introduction	153
6.2	Time-independent perturbation method	162
6.3	Effect of anharmonicity on the solution of harmonic	
	oscillator problem	162
6.4	Time-dependent perturbation theory	165
6.5	Fermi-Golden rule	169
6.6	Summary	162
6.7	Answer to check your progress	172
6.8	Review questions	173
	6.8.1 Long answer type questions	173
	6.8.2 Short answer type questions	173

UNIT - VII

7.0	Aims and Objectives	177
7.1	Introduction	177
7.2	The scattering experiment	178
7.3	The method of partial waves	181
7.4	Scattering by a central potential	186
7.5	Zero energy scattering- the scattering length	188

7.6	Scattering by square-well potential	190
7.7	Effective range	192
7.8	Resonance scattering	197
7.9	Summary	200
7.10	Answer to check your progress	200
7.11	Review questions	201
	7.11.1 Long answer type questions	201
	7.11.2 Short answer type questions	201

UNIT - VIII

8.0	Aims and Objectives	205
8.1	Introduction	205
8.2	Klein-Gordon equation	206
8.3	Probability and current densities	211
8.4	Dirac matrices	213
8.5	Dirac relativistic equation for free particles	214
8.6	Concept of negative energy states	225
8.7	Theory of holes	228
8.8	Summary	229
8.9	Answer to check your progress	230
8.10	Exercise	231
	8.10.1 Long answer type questions	231
	8.10.2 Short answer type questions	232

UNIT-1: PRINCIPLES OF QUANTUM MECHANICS

Postulates of quantum mechanics-Operator formalism-Eigen values and Eigen vectors-Schrodinger equations: Development of the Schrodinger time independent and time dependent wave equations-Solution of the time dependent Schrodinger equation-Concept of stationary states.

UNIT- II: ONE DIMENSIONAL PROBLEMS AND SOLUTIONS

Potential step - Reflection and Transmission at the interface. - Potential well: Square well potential with rigid walls - Square well potential with finite walls - Potential barrier: Penetration of a potential barrier (tunneling effect) - Radioactive emission of alpha particle. Periodic potential - Harmonic oscillator.

UNIT- III: MATRIX FORMULATION

Matrix representation of wave functions - Linear operators - The concept of row and column matrices - Matrix algebra - Hermitian operators-Definition - Dirac's bra and ket notation - Expectation values - Heisenberg (operator) representation of harmonic oscillator - Ladder operators and their significance.

UNIT- IV : ANGULAR MOMENTUM

Angular momentum (AM) operators: Definition - Eigen functions and Eigen values of AM operators - Matrix representation of AM operators - System with spin half(1/2) -Spin angular momentum - Pauli's spin matrices - Clebsch-Gordon coefficients - Rigid Rotator.

UNIT-V : IDENTICAL PARTICLES AND MOLECULES

Identical Particles - Symmetric and anti-symmetric wave functions - Indistinguishability of identical particles - Pauli's exclusion principle - Hydrogen molecule ion - Hydrogen molecule - Concept of Ortho and Para Hydrogen.

UNIT-VI: APPROXIMATION METHODS

Time-independent perturbation method - Effect of anharmonicity on the solution of harmonic oscillator problem - Time-dependent perturbation theory - Fermi-Golden rule.

UNIT-VII: THEORY OF SCATTERING

The scattering experiment - The method of partial waves - Scattering by a central potential - Zero energy scattering - The Scattering length - Scattering by square-well potential -Effective range - Resonance scattering.

UNIT-VIII: RELATIVISTIC QUANTUM MECHANICS

Klein-Gordon equation - Probability and current densities - Dirac matrices - Dirac relativistic equation for free particles - Concept of negative energy states - Theory of holes.

NUCLEAR PHYSICS AND MOLECULAR SPECTROSCOPY

I - M.Sc(Physics) / II- Semester Choice Based Credit System(CBCS)

- By Prof. Y.C. Rathnakaran Prof. O.M.D. Hussain Prof. S. Vijayabhaskar Rao Department of Physics, Sri Venkateswara University, Tirupati-517502, Andhra Pradesh, India.

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 **Year :** 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

UNIT - I

Page No.

Introduction to nuclear physics

1.0	Aims and Objectives	1
1.1	Introduction	1
1.2	Introduction to nuclear properties - Radius, Mass	3
	1.2.1 Packing fraction and binding energy	8
1.3	Nuclear angular momentum, parity and symmetry	11
1.4	Magnetic dipole moment and electric quadrapole moment	15
1.5	Nuclear two-body problem	20
	1.5.1 The Deuteron-Introduction	22
	1.5.2 Simple theory of Deuteron	22
1.6	Spin dependence of nuclear forces, tensor forces	24
1.7	Meson theory of nuclear forces	28
1.8	Summary	36
1.9	Answer to check your progress	36
1.10	Exercise	37
	1.10.1 Long answer type questions	37
	1.10.2 Short answer type questions	37
	1.10.3 Problems	37

UNIT - II

Nuclear Models and Nuclear Reactions

2.0	Aims and Objectives	39
	2.1 Introduction	39
2.2	The nuclear shell or independent particle model	41
2.3	The liquid drop model and semi-empirical binding energy formula	46

2.4	The collective nuclear model	57
2.5	Reaction Dynamics	58
	2.5.1 Q-equation	58
2.6	Cross sections for nuclear reactions	62
2.7	The compound nucleus	67
	2.7.1 Compound nucleus formation and break-up	71
2.8	Stripping and photo-nuclear reactions	72
2.9	Summary	74
2.10	Answer to check your progress	74
2.11	Exercise	75
	2.11.1 Long answer type questions	75
	2.11.2 Short answer type questions	75
	2.11.3 Problems	75

UNIT - III

Elementary Particles

3.0	Aims and Objectives	77
3.1	Introduction	77
3.2	Stable particles against decay through nuclear forces-parameters	79
	3.2.1 Mass, particles and anti-particles, strangeness, decay times	82
3.3	Conservation laws	87
	3.3.1 Conservation of Baryons	88
	3.3.3 Conservation of strangeness	89
	3.3.4 Conservation of parity and isotopic spin	90
3.4	Stable particles	97
	3.4.1 Mass-less Bosons	97
	3.4.2 Leptons	97
	3.4.3 Mesons	103

	3.4.4 Baryons	106
3.5	Summary	113
3.6	Answer to check your progress	113
3.7	Exercise	114
	3.7.1 Long answer type questions	114
	3.7.2 Short answer type questions	114
	3.7.3 Problems	114

UNIT - IV

Particle Detectors and Accelerators

4.0 Aims and Objectives 115 4.1 Introduction 115 4.2 Particle detectors 116 4.2.1 Gas filled detectors 117 4.2.2 Solid state detectors, Scintillation counter 118 Nuclear Emulsions 120 4.3 4.3.1 High energy particle detectors, Cernkov detectors 120 4.3.2 Bubble chamber and cloud chamber 124 4.4 Particle accelerators 127 4.4.1 Ion sources 128 4.4.2 Direct current accelerators 129 4.4.3 The cyclotron 131 4.4.4 The linear accelerators 135 4.5 Betatron 138 140 4.6 Summary 4.7 Answer to check your progress 140 4.8 Exercise 141

4.8.1 Long answer type questions	141
4.8.2 Short answer type questions	141
4.8.3 Problems	141

UNIT - V

Diatomic Molecular Spectra

5.0	Aims and Objectives	143
5.1	Introduction	143
5.2	Born-oppenheimer approximation	144
5.3	Rotational spectra	146
5.4	Vibrational spectra	148
5.5	Electronic spectra	153
5.6	Vibrational isotope effect	154
	5.6.1 Potential curves	159
5.7	Dissociation energies	160
5.8	Franck-condon principle	163
5.9	Summary	166
5.10	Answer to check your progress	166
5.11	Exercise	167
	5.11.1 Long answer type questions	167
	5.11.2 Short answer type questions	167
	5.11.3 Problems	167
	UNIT - VI	

Infrared and Raman Spectroscopy

6.0	Aims and Objectives	169
6.1	Introduction	169

6.2	Theory of IRs	170
	6.2.1 IR double beam spectrometer	173
6.3	Vibrations of polyatomic molecules	176
6.4	Analysis of IR spectra of thymidine and Hydrocarbons	179
6.5	Raman Spectroscopy	180
6.6	Classical and quantum theories of Raman effect	184
6.7	Laser Raman spectrometer	187
6.8	Raman spectra of CO ₂ , N ₂ O, SO ₂	189
6.9	Differences between IR and Raman	192
6.10	Advantages of Raman spectroscopy over IR	193
6.11	Summary	194
6.11	Answer to check your progress	195
6.12	Exercise	195
	6.12.1 Long answer type questions	195
	6.12.2 Short answer type questions	196
	6.12.3 Problems	196
	UNIT - VII	

Basics of NMR & ESR Spectroscopy

7.0	Aims and Objectives	197
7.1	Introduction	197
7.2	Theory of ESR spectroscopy	198
	7.2.1 Instrumentation	200
7.3	Hyperfine splitting	202
7.4	Application to ESR spectra of Mn^{2+} and Cu^{2+} ions	203
7.5	Theory of NMR spectroscopy	208
	7.5.1 Instrumentation	215

7.6	Chemical shift and its origin	218
7.7	Spin-lattice and spin-spin relaxation	220
7.8	Applications to CH_3CHO and C_2H_5OH	222
7.9	Summary	224
7.10	Answer to check your progress	225
7.11	Exercise	225
	7.11.1 Long answer type questions	225
	7.11.2 Short answer type questions	226
	7.11.3 Problems	226
	UNIT - VIII	

Basics of NQR & Mossbauer Spectroscopy

8.0	Aims and Objectives	227
8.1	Introduction	227
8.2	Theory of NQR spectroscopy	229
	8.2.1 Instrumentation	223
8.3	Applications	237
	8.3.1 Structural information about group III halides	238
	8.3.2 Charge transfer compounds	241
8.4	Recoil-less emission and absorption of γ rays	242
8.5	Mossbauer effect	245
	8.5.1 Instrumentation	248
8.6	Applications to Mossbauer spectroscopy	251
8.7 S	Summary	255
8.8	Answer to check your progress	255
8.9	Exercise	256
	8.9.1 Long answer type questions	256

8.9.2 Short answer type questions	256
8.9.3 Problems	256

UNIT-I: INTRODUCTION TO NUCLEAR PHYSICS

Introduction to Nuclear properties-Radius, Mass, Packing fraction and binding energy, nuclear angular momentum, parity and symmetry, Magnetic dipole moment and electric quadrapole moment. Nuclear Two-Body problem: The Deuteron-Introduction, Simple theory of Deuteron, Spin dependence of Nuclear forces, Tensor forces. Meson theory of Nuclear forces.

UNIT-II: NUCLEAR MODELS AND NUCLEAR REACTIONS

Introduction, the nuclear shell or independent particle model, The liquid drop model and semi-empirical binding energy formula, the collective nuclear model. Reaction Dynamics: Q-equation, Cross sections for nuclear reactions, the compound nucleus, compound nucleus formation and break-up, Stripping and Photo-nuclear reactions

UNIT-III: ELEMENTARY PARTICLES

Stable particles against decay through nuclear forces-parameters: Mass, particles and anti-particles, strangeness, decay times. Conservation laws: Conservation of Baryons, Conservation of Strangeness, Conservation of parity and isotopic spin, Stable particles: Mass-less Bosons, Leptons, Mesons, Baryons.

UNIT-IV : PARTICLE DETECTORS AND ACCELERATORS

Particle detectors: Gas filled detectors, Solid state detectors, Scintillation counter, Nuclear Emulsions. High energy particle detectors, Cerenkov detectors. Bubble chamber and Cloud chamber. Particle accelerators: Ion sources, Direct current accelerators, The cyclotron. The linear accelerators, Betatron.

UNIT -V : DIATOMIC MOLECULAR SPECTRA

Born-oppenheimer approximation, Rotational spectra, Vibrational spectra, Electronic spectra, Vibrational isotope effect, Potential curves, Dissociation energies, Franck-Condon principle.

UNIT- VI: INFRARED AND RAMAN SPECTROSCOPY

Theory of IR, IR double beam spectrometer, Vibrations of polyatomic molecules, Analysis of IR spectra of thymidine and Hydrocarbons.

Raman Spectroscopy: Classical and quantum theories of Raman Effect, Laser Raman spectrometer, Raman spectra of CO_2 , N_2O , SO_2 . Differences between IR and Raman, Advantages of Raman spectroscopy over IR.

UNIT - VII: BASICS OF NMR & ESR SPECTROSCOPY

Theory of ESR spectroscopy, Instrumentation, Hyperfine splitting, Application to ESR spectra of Mn^{2+} and Cu^{2+} ions.

Theory of NMR spectroscopy, Instrumentation, Chemical shift and its origin, Spin-lattice and spin-spin relaxation, Applications to CH_3CHO and C_2H_5OH .

UNIT -VIII: BASICS OF NQR & MOSSBAUER SPECTROSCOPY

Theory of NQR spectroscopy, Instrumentation, Applications (brief details only): Structural information about group III halides, Charge transfer compounds. Recoil-less emission and absorption of γ rays, Mossbauer effect, Instrumentation, Applications to Mossbauer spectroscopy.

NUMERICAL TECHNIQUES & COMPUTER PROGRAMMING

I - M.Sc(Physics) / II- Semester Choice Based Credit System(CBCS)

- By Prof. Y.C. Rathnakaran Prof. O.M.D. Hussain Prof. S. Vijayabhaskar Rao Department of Physics, Sri Venkateswara University, Tirupati-517502, Andhra Pradesh, India.

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 **Year :** 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

PAPER VII: NUMERICAL TECHNIQUES &

COMPUTER PROGRAMMING

UNIT -1: ROOTS OF EQUATION

Solution of algebraic and transcendental equations: Bisection method, Method of false position and Newton-Raphson method. Principle of least squares - fitting of polynomials.

UNIT-II: INTERPOLATION

Definition of Interpolation-Finite difference operation (forward, backward and central difference), Newton forward difference interpolation formula, Newton backward difference interpolation formula, Gauss's Central difference Interpolation formula, Lagrange's Interpolation formula and Inverse Interpolation.

UNIT - III: NUMERICAL DIFFERENTIATION & INTEGRATION

Numerical Differentiation: Cubic Spline Method, Maximum and minimum values of a tabulated function. Numerical Integration: Trapezoidal Rule, Simpson's 1/3 Rule and 3/8 Rule.

UNIT - IV : MATRICES AND LINER SYSTEM OF EQUATIONS

Introductions - Basic definitions- Matrix operations- Transpose of a matrix. Inverse of a Matrix - Rank of amatrix. Solutions of linear systems- Direct methods: Matrix Inversion method, Gaussian Elimination method, Modification of Gaussian Elimination method(Gauss-Jordan Method). Iterative methods: Jacobi method, Gauss Seidel method.

UNIT-V : NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Introduction, Solution by Taylor's series, Picard's method of successive approximations, Euler's method. Modified Euler's method.

Runge-Kutta method: Second order Runge-Kutta formula, and Runge-Kutta fourth order formula.

UNIT - VI: INTRODUCTION TO 'C' LANGUAGE

Character Set, C tokens, Key words and Identifiers, Constants and Variables, Data types, Declaration of variables. Operators and expressions: Arithmetic, Relational, Logical, Assignment, Increment and Decrement operators, Conditional, Bitwise and Special operators. Precedence in evaluating arithmetic operators. Reading and Writing a character. IF, IF-ELSE, Nesting IF-ELSE, ELSE IF ladder and GOTO statements, WHILE, DO, FOR loop statements. Simple programs.

UNIT - VII: PROGRAMMING IN 'C' LANGUAGE

Arrays: One and Two dimensional arrays, Declaring and initializing string variables.

Reading strings from terminal and writing strings to screen. User defined functions: Definition of functions, Return values and their types. Function calls and function declaration. Pointers: Declaring and initializing pointers, Accessing a variable through its pointer. C- Programming: Linear regression, Sorting of numbers, Calculation of standard deviation and Matrix multiplication.

UNIT - VIII: PROGRAMMING IN C -NUMERICAL METHODS

Bisection method, Method of false position and Newton-Raphson method.

Numerical Integration: Trapezoidal Rule and Simpson's 1/3 Rule. Numerical solution of Differential equation: Runge-Kuuta method of order four.

CONTENTS

UNIT - I

Page No.

1.0	Aims and Objectives	1
1.1	Introduction	1
1.2	Solution of Algebraic and Transcendental Equations	2
	1.2.1 The Bisection Method	2
	1.2.2 The Method of False Position	7
	1.2.3 Newton Raphson Method	11
1.3	Principle of least squares	23
	1.3.1 Fitting of polynomials	23
1.4	Summary	25
1.5	Exercise	26
	UNIT - II	
2.0	Aims and Objectives	27
2.1	Introduction	28
2.2	Interpolation	28
2.3	Finite difference operation	30
	2.3.1 Forward difference	30
	2.3.2 Backward difference	32
	2.3.3 Central difference	34
	2.3.4 Symbolic relations	35
	2.3.5 Solved examples	37
2.4	Newton's formula for interpolation	42
	2.4.1 Newton forward differencei nterpolation formula	42
	2.4.2 Newton backward difference interpolation formula	42
2.5	Gauss's Central difference Interpolation formula	48
2.6	Lagrange's Interpolation formula	53
2.7	Newton's General Interpolation	58
2.8	Summary	64
2.9	Exercise	65
	UNIT - III	
3.0	Aims and Objectives	67
3.1	Introduction	67
3.2	Numerical Differentiation	68

Numerical Differentiation683.2.1Maximum and minimum values of a tabulated function713.2.2Solved Problems72

3.3	Numerical Integration	80
	3.3.1 Trapezoidal Rule	81
	3.3.2 Simpson's 1/3 Rule	83
	3.3.3 Simpson's 3/8 Rule	84
3.4	Summary	100
3.5	Exercise	101

TINITT	TT7
UNII	- I V

4.0	Aims and Objectives	103
4.1	Introduction	104
4.2	Basic definitions	105
4.3	Matrix operations	110
	4.3.1 Transpose of a matrix	110
	4.3.2 Inverse of a matrix	111
	4.3.3 Rank of a matrix	117
4.4	Solution of Linear system of equations by direct methods	120
	4.4.1 Matrix Inversion Method	122
	4.4.2 Gaussian elimination method	123
	4.4.3 Modification of Gaussian Elimination Method	
	(Gauss - Jordan Methd)	125
4.5	Solution of Linear system of equations by iterative methods	131
	4.5.1 Jacobi's Method	131
	4.5.2 Gauss - Siedal Method	132
4.6	Summary	141
4.7	Exercise	141
	UNIT - V	
5.0	Aims and Objectives	143
5.1	Introduction	143
5.2	Solution by Taylor's series	144
5.3	Picard's Method of Successive Approximations	145
5.4	Euler's Method	150
5.5	Modified Euler's method	151
5.6	Runge Kutta Method	157
5.7	Summary	173

174

UNIT - VI

6.0	Aims and Objectives	175
6.1	Introduction	176
6.2	Character Set	177
6.3	C tokens	177
6.4	Key words and Identifiers	178
6.5	Constants, Variables and Data types	185
	6.5.1 Declaration of variables	185
6.6	Operators and expressions	192
	6.6.1 Arithmetic operators	194
	6.6.2 Relational operators	196
	6.6.3 Logical operators	197
	6.6.4 Assignment operators	199
	6.6.5 Increment and Decrement operators	200
	6.6.6 Conditional, Bitwise and Special operators	201
	6.6.7 Precedence in evaluating arithmetic operators	202
6.7	Reading and Writing a character	206
6.8	Statements	207
	6.8.1 Selection statements	208
	6.8.2 Reptition statements	214
6.9	Simple programs	218
6.10	Summary	223
6.11	Exercise	223

UNIT - VII	

7.0	Aims and Objectives	225
7.1	Introduction	226
7.2	Arrays	229
	7.2.1 One dimensional array	230
	7.2.2 Two dimensional array	233
	7.2.3 Declaring and initializing string variables	234
7.3	Reading strings from terminal and writing strings to screen	245
7.4	User defined functions	246
	7.4.1 Definition of functions	247
	7.4.2 Return values	248

7.5	Function calls and function declaration	249
7.6	Pointers	252
	7.6.1 Declaring and initializing pointers	252
	7.6.2 Accessing a variable through its pointer	259
7.7	Summary	262
7.8	Exercise	263

|--|

8.0	Aims and Objectives	265
8.1	C- Programming	265
	8.1.1 Linear regression	265
	8.1.2 Sorting of numbers	267
	8.1.3 Calculation of standard deviation and Matrix multiplication	293
8.2	Bisection method	296
8.3	Method of false position	299
8.4	Newton-Raphson method	302
8.5	Numerical Integration	308
	8.5.1 Trapezoidal Rule	308
	8.5.2 Simpson's 1/3 Rule	309
8.6	Numerical solution of Differential equation	312
	8.6.1 Runge-Kuuta method of order four	312
8.7	Summary	313
8.8	Exercise	314

DIGITAL ELECTRONICS, MICROPROCESSORS AND COMMUNICATION ELECTRONICS

I - M.Sc(Physics) / II- Semester Choice Based Credit System(CBCS)

- By Prof. Y.C. Rathnakaran Prof. O.M.D. Hussain Prof. S. Vijayabhaskar Rao Department of Physics, Sri Venkateswara University, Tirupati-517502, Andhra Pradesh, India.

Centre for Distance and Online Education Sri Venkateswara University Tirupathi, AP -517 502 Year: 2024

Edtion : First

All rights reserved (SVU CDOE). No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Publisher.

(An ISO 9001 : 2015 Certified Publishers) # 326/C, Surneni Nilayam Near B K Guda Park, S R Nagar Hyderabad - 500 038 TS P.No:+91 40 23710657, 238000657, 23810657 Cell:+91 94405 75657, 93925 75657, 93935 75657 Reg. Off.: 5-68, Pedda Gorpadu, Pakala, Tirupathi - 517 112 AP mail: studentshelpline.in@gmail.com

for

Director

Centre for Distance and Online Education Sri Venkateswara University

Tirupathi, AP -517 502 mail : directorddesvu@gmail.com Cell: +91 877-2289380 www.svudde.in

CONTENTS

UNIT - I Page No. 1.0 Aims and Objectives 1 1.1 Introduction 2 1.2 Number systems and codes 2 1.3 Logic gates 19 1.3.1 AND, OR, NOT, NAND, NOR operation 19 1.4 Boolean algebra 26 29 1.4.1 De Morgan's laws 1.5 Karnaugh map 31 1.6 Multiplexer, Demultiplexer 37 1.7 3-to-8 decoder and BCD-to-seven segment decoder, Encoder 41 1.8 Binary addition, Subtraction 45 1.9 Half and Full adders 47 50 1.9.1 4-bit parallel adder 1.10 2's Complement subtractor 52 1.11 Summary 55 1.12 Answer to check your progress 55 1.13 Exercise 56 56 1.13.1 Long answer type questions 1.13.2 Short answer type questions 57 1.13.3 Problems 57 UNIT - II 2.0 Aims and Objectives 59 2.1 Introduction 59 2.2 Flip-Flops 62 2.2.1 NAND-Latch, RS, D and JK flipflops 63 2.3 75 Counters 2.3.1 Asynchronous (ripple) counters, 4-bit ripple counter, MOD-5 and decade counters 75 2.3.2 Synchronous (Parallel) counters, 4-bit parallel counter 82 2.4 Registers 87 2.4.1 Shift register-Serial in/Serial out and Serial in/Parallel out, **Ring Counter** 87 2.5 Summary 96

2.5Summary962.6Answer to check your progress962.7Exercise972.7.1Long answer type questions97

2.7.2 Short answer type questions	98
2.7.3 Problems	98

UNIT - III

3.0	Aims and Objectives	99
3.1	Introduction	99
3.2	Digital -to- analog conversion	101
	3.2.1 Variable Resistor network and R-2R ladder network	102
	3.2.2 Accuracy and Resolution	112
3.3	Analog-to-Digital Conversion	114
	3.3.1 Counter method	116
	3.3.2 Successive Approximation and Dual-slope techniques	118
	3.3.3 Accuracy and Resolution	123
3.4	Summary	125
3.5	Answer to check your progress	126
3.6	Exercise	127
	3.6.1 Long answer type questions	127
	3.6.2 Short answer type questions	127
	3.6.3 Problems	127

|--|

4.0	Aims and Objectives	129
4.1	Introduction	129
4.2	Pin out configuration and signals	133
4.3	Functional block diagram and explanation of blocks	136
	4.3.1 Register architecture	144
	4.3.2 Demultiplexing and generating control signals	149
4.4	Instruction timing and execution	151
	4.4.1 Basic timing, Memory read and memory write cycles	155
4.5	Memory, I/O and Interrupt structures	158
4.6	Addressing modes	162
	4.6.1 Direct register, register indirect and immediate addressing modes	163
4.7	Instruction format	165
	4.7.1 Brief summary of instruction set	165
4.8	Simple Programs (Addition, Subtraction and multiplication)	177
4.9	Summary	178
4.10	Answer to check your progress	179
4.11	Exercise	179
	4.11.1 Long answer type questions	179

4.11.2 Short answer type questions	179
4.11.3 Problems	179

|--|

5.0	Aims and Objectives	181
5.1	Introduction	181
5.2	Programmable Serial Interfacing 8251	182
5.3	Programmable Peripheral interfacing 8255	189
5.4	Programmable interval Timer 8254	195
5.5	Keyboard/Display Controller 8279 and DMA Controller 8237	199
5.6	Summary	205
5.7	Answer to check your progress	206
5.8	Exercise	207
	5.8.1 Long answer type questions	207
	5.8.2 Short answer type questions	207
	5.8.3 Problems	207

6.0	Aims and Objectives	209
6.1	Introduction	209
6.2	Interfacing 8085 based microcomputer with : Seven Segment Dispaly	211
	6.2.1 Stepper Motor	215
6.3	Digital to analog converter IC DAC 0800	223
6.4	Analog to Digital Converter IC ADC 0804	227
6.5	Summary	229
6.6	Answer to check your progress	229
6.7	Exercise	229
	6.7.1 Long answer type questions	229
	6.7.2 Short answer type questions	230
	6.7.3 Problems	230
	UNIT - VII	

7.0	Aims and Objectives	232
7.1	Introduction	232
7.2	Amplitude Modulation	232
	7.2.1 Introduction to Amplitude modulation	232
	7.2.2 Frequency Spectrum, Coefficient of modulation	232
	7.2.3 AM voltage and power Dissipation	238
7.3	AM modulator circuit	241

7.4	AM transmitter	247
	7.4.1 AM super heterodyne receiver	250
7.5	AM Detector-Peak Detector	253
7.6	Single side band (SSB) modulation Principle	255
	7.6.1 SSB generation-Balanced Ring Modulator	259
	7.6.2 Comparison of SSB to conventional AM	265
7.7	Angle modulation	267
	7.7.1 Frequency Modulation, Percentage modulation	267
	7.7.2 Frequency spectrum, Power	269
7.8	FM Modulator	274
	7.8.1 Varactor diode Modulator	276
	7.8.2 FM transmitter, FM receiver	278
7.9	FM demodulator	282
	7.9.1 Balanced slope detector	283
7.10	Summary	286
7.11	Answer to check your progress	286
7.12	Exercise	286
	7.12.1 Long answer type questions	286
	7.12.2 Short answer type questions	287
	7.12.3 Problems	287

UNIT - VIII	

8.0	Aims and Objectives	289
8.1	Introduction	289
8.2	Shannon limit for information capacity	293
8.3	Digital Amplitude Modulation	296
	8.3.1 Frequency Shift Keying	297
	8.3.2 Phase Shift Keying	299
8.4	M-ary encoding	309
8.5	Quadrature Amplitude Modulation	309
	8.5.1 Bandwidth efficiency, Carrier recovery	313
8.6	Differential Phase shift Keying	316
8.7	Pulse Code Modulation	320
8.8	Summary	328
8.9	Answer to check your progress	328
8.10	Exercise	329
	8.10.1 Long answer type questions	329
	8.10.2 Short answer type questions	329
	8.10.3 Problems	329

PAPER -VIII: DIGITAL ELECTRONICS, MICROPROCESSORS AND COMMUNICATION ELECTRONICS

UNIT -1: FUNDAMENTALS OF DIGITAL ELECTRONICS

Number systems and codes. Logic gates: AND, OR, NOT, NAND, NOR operation, Boolean algebra, De Morgan's laws, Karnaugh map, Multiplexer, Demultiplexer, 3-of-8 decoder and BCD-to-Seven Segment Decoder, Encoders, Binary addition, Subtraction, Half and Full adders, 4-bit Parallel adder, 2's Complement subtracter.

UNIT - II: FLIP-FLOPS, COUNTERS AND REGISTERS

Flip-Flops: NAND -Latch, RS, D and JK flip-flops.

Counters: Asynchronous(ripple)counters: 4-bit ripple counter,MOD-5 and decade Counters, Syncronous(parallel)counters: 4-bit parallel counter.

Registers: Shift register-Serial in / Serial out and Serial in/Parallel out, Ring Counter.

UNIT-III:DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS

Digital-to-Analog conversion: Variable Resistor network and R-2R ladder network, Accuracy and Resolution.Analog-to-Digital Conversion: Counter Method, Successive Approximation and Dual-slope techniques, Accuracy and Resolution.

UNIT - IV : INTEL 8085 MICROPROCESSOR

Introduction, Pin out configuration and signals, Functional Block diagram and explanation of blocks, Register architecture, De-multiplexing and generating Control signals. Instruction timing and execution - Basic timing, memory Read and memory write cycles. Memory, I/O and Interrupt Structures. Addressing Modes: Direct, Register, Register Indirect and immediate Addressing modes. Instruction format, Brief summary of Instruction Set. Simple Programs (Addition, Subtraction and Multiplication).

UNIT - V : BASICS OF PERIPHERAL DEVICES AND INTERFACING

Programmable Serial Interface 8251, Programmable Peripheral interface 8255, Programmable Interval Timer 8254, Keyboard/Display Controller 8279 and DMA Controller 8237.

UNIT - VI: REAL WORLD INTERFACING WITH 8085 MICROPROCESSOR Interfacing 8085 based microcomputer with: Seven Segment Display, Stepper Motor, Digital - to - Analog Converter 1C DAC 0800, Analog - to- Digital Converter 1C ADC 0804.

UNIT - VII: ANALOG COMMUNICATIONS

Amplitude Modulation: Introduction, Amplitude modulation, Frequency Spectrum, coefficient of modulation, AM Voltage and Power Dissipation, AM Modulator Circuit, AM transmitter, AM Super-heterodyne receiver, AM Detector-Peak Detector. Single side band(SSB) Modulation: Principle, SSB Generation - Balanced Ring Modulator, comparison of SSB to Convertional AM. Angle Modulation: Frequency Modulation, Percentage Modulation, Frequency Spectrum, Power, FM Modulator -

Varactor diode Modulator, FM Transmitter, FM receiver, FM demodulator - Balanced Slope Detector.

UNIT - VIII: DIGITAL COMMUNICATIONS

Shannon limit for information capacity, Digital Amplitude Modulation, Frequency Shift Keying, Phase Shift Keying, M-ary encoding, Quadrature Amplitude Modulation, Band Width efficiency, Carrier recovery, Differential Phase Shift Keying, Pulse Code Modulation.